裸的pell方程。 然后加个快速幂.

No more tricks, Mr Nanguo

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 320    Accepted Submission(s): 207

Problem Description
Now Sailormoon girls want to tell you a ancient idiom story named “be there just to make up the number”. The story can be described by the following words.
In the period of the Warring States (475-221 BC), there was a state called Qi. The king of Qi was so fond of the yu, a wind instrument, that he had a band of many musicians play for him every afternoon. The number of musicians is just a square number.Beacuse a square formation is very good-looking.Each row and each column have X musicians.
The king was most satisfied with the band and the harmonies they performed. Little did the king know that a member of the band, Nan Guo, was not even a musician. In fact, Nan Guo knew nothing about the yu. But he somehow managed to pass himself off as a yu player by sitting right at the back, pretending to play the instrument. The king was none the wiser. But Nan Guo's charade came to an end when the king's son succeeded him. The new king, unlike his father, he decided to divide the musicians of band into some equal small parts. He also wants the number of each part is square number. Of course, Nan Guo soon realized his foolish would expose, and he found himself without a band to hide in anymore.So he run away soon.
After he leave,the number of band is Satisfactory. Because the number of band now would be divided into some equal parts,and the number of each part is also a square number.Each row and each column all have Y musicians.
 
Input
There are multiple test cases. Each case contains a positive integer N ( 2 <= N < 29). It means the band was divided into N equal parts. The folloing number is also a positive integer K ( K < 10^9).
 
Output
There may have many positive integers X,Y can meet such conditions.But you should calculate the Kth smaller answer of X. The Kth smaller answer means there are K – 1 answers are smaller than them. Beacuse the answer may be very large.So print the value of X % 8191.If there is no answers can meet such conditions,print “No answers can meet such conditions”.
 
Sample Input
2 999888
3 1000001
4 8373
 
Sample Output
7181
600
No answers can meet such conditions
//
// main.cpp
// hdu3292
//
// Created by 陈加寿 on 15/12/1.
// Copyright (c) 2015年 陈加寿. All rights reserved.
// #include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <stdio.h>
#include <string>
#include <math.h>
using namespace std; #define MOD 8191 void matrix_mul(long long s[][],long long t[][])
{
long long tmp[][];
memset(tmp,,sizeof(tmp));
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++)
tmp[i][j]=(tmp[i][j]+s[i][k]*t[k][j])%MOD;
for(int i=;i<;i++)
for(int j=;j<;j++)
s[i][j]=tmp[i][j];
} int main(int argc, const char * argv[]) {
long long n,k;
while(cin>>n>>k)
{
long long x=sqrt( (double)n );
if(x*x==n)
{
printf("No answers can meet such conditions\n");
continue;
}
//然后开始寻找第一个解
long long x0,y0;
for(long long i=;;i++)
{
x=sqrt((double)(i*i*n+));
if(x*x==i*i*n+)
{
x0=x;
y0=i;
break;
}
}
long long mat[][],ans[][];
mat[][]=x0; mat[][]=y0;
mat[][]=n*y0; mat[][]=x0;
memset(ans,,sizeof(ans));
ans[][]=; ans[][]=;
k-=;
while(k)
{
if(k&) matrix_mul(ans,mat);
k>>=;
matrix_mul(mat,mat);
}
long long ans1;
ans1 = (x0*ans[][]+y0*ans[][])%MOD;
cout<<ans1<<endl;
}
return ;
}

hdu3293(pell方程+快速幂)的更多相关文章

  1. No more tricks, Mr Nanguo HDU - 3292(pell + 矩阵快速幂)

    No more tricks, Mr Nanguo Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Jav ...

  2. HDU 3292 【佩尔方程求解 && 矩阵快速幂】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=3292 No more tricks, Mr Nanguo Time Limit: 3000/1000 M ...

  3. hdu3483 A Very Simple Problem 非线性递推方程2 矩阵快速幂

    题目传送门 题目描述:给出n,x,mod.求s[n]. s[n]=s[n-1]+(x^n)*(n^x)%mod; 思路:这道题是hdu5950的进阶版.大家可以看这篇博客hdu5950题解. 由于n很 ...

  4. Pell方程及其一般形式

    一.Pell方程 形如x^2-dy^2=1的不定方程叫做Pell方程,其中d为正整数,则易得当d是完全平方数的时候这方程无正整数解,所以下面讨论d不是完全平方数的情况. 设Pell方程的最小正整数解为 ...

  5. POJ 1320 Street Numbers Pell方程

    http://poj.org/problem?id=1320 题意很简单,有序列 1,2,3...(a-1),a,(a+1)...b  要使以a为分界的 前缀和 和 后缀和 相等 求a,b 因为序列很 ...

  6. HDU 4471 矩阵快速幂 Homework

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...

  7. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  8. CodeForces 185A 快速幂

    一开始找矩阵快速幂的题来做时就看到了这题,题意就是让你求出如图所示的第n个三角形中指向向上的小三角形个数.从图中已经很容易看出递推关系了,我们以f[n]表示第n个大三角形中upward的小三角形个数, ...

  9. [HDOJ2604]Queuing(递推,矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 递推式是百度的,主要是练习一下如何使用矩阵快速幂优化. 递推式:f(n)=f(n-1)+f(n- ...

随机推荐

  1. CSS从大图片上截取小图标

    一张图片,用CSS分割成多个小图标. css样式: .icon{ background:url(../images/tabicons.png) no-repeat;width:18px; line-h ...

  2. Java迭代器原理

    1迭代器模式 迭代器是一种设计模式,这种模式用于顺序访问集合对象的元素,不需要知道集合对象的底层表示. 一般实现方式如下:(来自)

  3. java int转String全部方式的效率对照与深入解析

    在java中,大家肯定都会遇到int类型转String类型的情形,知其然知其所以然.总结加分析一下,int类型转String类型有下面几种方式: a+"" String.value ...

  4. AndroidStudio怎么实现微信分享功能

    在应用中添加微信分享功能,需要在微信开放平台上传你的应用,审核通过后方可使用此功能. https://open.weixin.qq.com/网址 申请的过程比较简单,这里就不追溯了,贴一个友情链接 h ...

  5. SpringMVC 下载XLS文档的设置

    页面设置参考上文.SpringMVC 下载文本文档的设置 此文是关于xls文档下载的,这个文档使用Apache的POI生成,需要的jar包可以从下面地址下载: http://pan.baidu.com ...

  6. Angular 学习笔记——ng-repeat&filter

    <!DOCTYPE html> <html lang="en" ng-app="myApp"> <head> <met ...

  7. [PIC32--IDE]使用MPLAB IDE调试

    问题描写叙述 安装好MPLAB IDE后,就能够用来调试自己的PIC32板子,用于应用的开发了. 开发板 手边使用的是Microchip的PIC32 Ethernet Starter Kit II的小 ...

  8. C语言 | 基础知识点笔记

    函数 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...

  9. Flex 自定义打印控件编写

    打印历来是web应用一个比较棘手的问题,幸好flex web应用是运行在flash player上的,flash player可以访问打印机,所以flex 应用可以实现比较强大的打印功能.Flex 自 ...

  10. Mysql5.6压缩包安装到windows&& 卸载命令

    1.根目录下有一个my-default.ini,复制一下,重命名为my.ini,然后改一下my.ini为符合你情况的配置,一般只需要改basedir .datadir .port ,注意前边的井号去掉 ...