【BZOJ4542】[Hnoi2016]大数

Description

  小 B 有一个很大的数 S,长度达到了 N 位;这个数可以看成是一个串,它可能有前导 0,例如00009312345。小B还有一个素数P。现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也是P 的倍数)。例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007;显然0077的子串007有6个子串都是素数7的倍数。

Input

  第一行一个整数:P。第二行一个串:S。第三行一个整数:M。接下来M行,每行两个整数 fr,to,表示对S 的子串S[fr…to]的一次询问。注意:S的最左端的数字的位置序号为 1;例如S为213567,则S[1]为 2,S[1…3]为 213。N,M<=100000,P为素数

Output

  输出M行,每行一个整数,第 i行是第 i个询问的答案。

Sample Input

11
121121
3
1 6
1 5
1 4

Sample Output

5
3
2
//第一个询问问的是整个串,满足条件的子串分别有:121121,2112,11,121,121。

题解:看到题容易想到用莫队。用sum[i]表示S的前i位组成的数%P的值,那么如果i...j能组成一个%P=0的数,意味着

$sum[j]-sum[i]*10^{j-i}=0(mod P) \rightarrow sum[j]*10^{-j}=sum[i]*10^{-i} (mod P)$

所以离散化一下,然后就变成了问一个区间中有多少对相同数,的用桶+莫队即可。

注意特判P=2,P=5的情况!因为上式不再成立!具体方法是直接判断哪些串的末尾的数能被2和5整除即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int maxn=100010;
int B,P,n,m,nm;
char str[maxn];
int v[maxn],s[maxn];
ll sum,ans[maxn];
ll s1[maxn],s2[maxn];
struct node
{
int val,org;
}p[maxn];
struct query
{
int l,r,org;
}q[maxn];
bool cmpp(node a,node b)
{
return a.val<b.val;
}
bool cmpq(query a,query b)
{
return (a.l/B==b.l/B)?(a.r<b.r):(a.l/B<b.l/B);
}
int main()
{
scanf("%d%s%d",&P,str,&m),n=strlen(str);
int i,l,r;
if(P==2||P==5)
{
for(i=1;i<=n;i++)
{
s1[i]=s1[i-1],s2[i]=s2[i-1];
if((str[i-1]-'0')%P==0) s1[i]+=i,s2[i]++;
}
for(i=1;i<=m;i++)
{
scanf("%d%d",&l,&r);
printf("%lld\n",s1[r]-s1[l-1]-(l-1)*(s2[r]-s2[l-1]));
}
return 0;
}
p[0].val=0;
for(i=1;i<=n;i++) p[i].val=(10ll*p[i-1].val+str[i-1]-'0')%P,p[i].org=i;
ll tmp=1;
for(i=n;i>=1;i--,tmp=tmp*10%P) p[i].val=tmp*p[i].val%P;
sort(p,p+n+1,cmpp);
for(i=0;i<=n;i++)
{
if(!i||p[i].val>p[i-1].val) nm++;
v[p[i].org]=nm;
}
B=int(sqrt(double(n)));
for(i=1;i<=m;i++) scanf("%d%d",&q[i].l,&q[i].r),q[i].l--,q[i].org=i;
sort(q+1,q+m+1,cmpq);
l=1,r=0;
for(i=1;i<=m;i++)
{
while(l>q[i].l) l--,sum+=s[v[l]],s[v[l]]++;
while(l<q[i].l) s[v[l]]--,sum-=s[v[l]],l++;
while(r<q[i].r) r++,sum+=s[v[r]],s[v[r]]++;
while(r>q[i].r) s[v[r]]--,sum-=s[v[r]],r--;
ans[q[i].org]=sum;
}
for(i=1;i<=m;i++) printf("%lld\n",ans[i]);
return 0;
}

【BZOJ4542】[Hnoi2016]大数 莫队的更多相关文章

  1. [BZOJ4542] [Hnoi2016] 大数 (莫队)

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

  2. bzoj4542 [Hnoi2016]大数 莫队+同余

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4542 题解 我们令 \(f_i\) 表示从 \(i\) 到 \(n\) 位组成的数 \(\bm ...

  3. 【bzoj4542】[Hnoi2016]大数 莫队算法

    题目描述 给出一个数字串,多次询问一段区间有多少个子区间对应的数为P的倍数.其中P为质数. 输入 第一行一个整数:P.第二行一个串:S.第三行一个整数:M.接下来M行,每行两个整数 fr,to,表示对 ...

  4. BZOJ.4542.[HNOI2016]大数(莫队)

    题目链接 大数除法是很麻烦的,考虑能不能将其条件化简 一段区间[l,r]|p,即num[l,r]|p,类似前缀,记后缀suf[i]表示[i,n]的这段区间代表的数字 于是有 suf[l]-suf[r+ ...

  5. 洛谷P3245 [HNOI2016]大数(莫队)

    题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...

  6. [BZOJ4542] [JZYZOJ2014][Hnoi2016] 大数(莫队+离散化)

    正经题解在最下面 http://blog.csdn.net/qq_32739495/article/details/51286548 写的时候看了大神的题解[就是上面那个网址],看到下面这段话 观察题 ...

  7. bzoj 4542: [Hnoi2016]大数 (莫队)

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

  8. [HNOI2016]序列(莫队,RMQ)

    [HNOI2016]序列(莫队,RMQ) 洛谷  bzoj 一眼看不出来怎么用数据结构维护 然后还没修改 所以考虑莫队 以$(l,r-1) -> (l,r)$为例 对答案的贡献是$\Sigma_ ...

  9. 【莫队】bzoj4542: [Hnoi2016]大数

    挺有意思的,可以仔细体味一下的题:看白了就是莫队板子. Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小 ...

随机推荐

  1. swift初探(供objective c开发人员參考)

    6月初的wwdc苹果推出了一门新的开发语言swift.系统10.9.3以上安装xcode6 beta版就可以体验swift. 苹果公司做了尽可能多的努力让这门语言迅速成为一个工业级的有用编程语言,而不 ...

  2. 查看Linux服务器CPU使用率、内存使用率、磁盘空间占用率、负载情况

    [root@server script]# vi monitor.py #!/usr/bin/env python # -*- coding:utf-8 -*- #Author: nulige imp ...

  3. c#中的构造方法

    c#基础--类的构造方法   当实例化一个类时,系统会自动对这个类的属性进行初始化 数字型初始化成0/0.0 string类型初始化成null char类型初始化成\0 构造器就是构造方法,能够被重载 ...

  4. README.md文档

    大标题 =================================== 大标题一般显示工程名,类似html的\<h1\> 你只要在标题下面跟上=====即可 中标题 ------- ...

  5. leetcode题解:Valid Parentheses(栈的应用-括号匹配)

    题目: Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the ...

  6. hdu 1030 Delta-wave(数学题+找规律)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1030 Delta-wave Time Limit: 2000/1000 MS (Java/Others ...

  7. 自己定义控件-LinearListView

    一.描写叙述 用LinearLayout 实现的一个ListView ,重写了ListView中的经常使用函数,所以使用起来和ListView 没有区别. 比方:setAdapter.addHeade ...

  8. 网页计算器 && 简易网页时钟 && 倒计时时钟

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. ionic中actionsheet在安卓中显示样式问题

    可以看到在浏览器上是正常的,在安卓上的样式没了 建议不要直接去动ionic的css文件,容易影响全局 方法:注释掉_action-sheet.sass中文件123行,针对安卓样式去写的样sass 保存 ...

  10. Linux shell快捷键

    Ctrl + a 可以快速切换到命令行开始处Ctrl + e 切换到命令行末尾Ctrl + r 在历史命令中查找 ctrl + u      删除光标前面所有字符相当于VIM里d shift+^ ct ...