1. permutation-sequence 顺序排列第k个序列

The set[1,2,3,…,n]contains a total of n! unique permutations.

By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the k th permutation sequence.

Note: Given n will be between 1 and 9 inclusive.

第一位每个数字开头的序列都有(n-1)!个序列,因此n个数字所以共有n!个序列。以此类推,第二位每一个数开头都有(n-2)!个序列。
 
public class Solution {
public String getPermutation(int n, int k) { // initialize all numbers
ArrayList<Integer> numberList = new ArrayList<Integer>();
for (int i = 1; i <= n; i++) {
numberList.add(i);
} // change k to be index
k--; // set factorial of n
int mod = 1;
for (int i = 1; i <= n; i++) {
mod = mod * i;
} String result = ""; // find sequence
for (int i = 0; i < n; i++) {
mod = mod / (n - i);
// find the right number(curIndex) of
int curIndex = k / mod;
// update k
k = k % mod; // get number according to curIndex
result += numberList.get(curIndex);
// remove from list
numberList.remove(curIndex);
} return result.toString();
}
}

leetcode:回溯——permutation-sequence,的更多相关文章

  1. LeetCode:60. Permutation Sequence,n全排列的第k个子列

    LeetCode:60. Permutation Sequence,n全排列的第k个子列 : 题目: LeetCode:60. Permutation Sequence 描述: The set [1, ...

  2. Java for LeetCode 060 Permutation Sequence

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  3. [LeetCode] 60. Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  4. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  5. 【leetcode】 Permutation Sequence (middle)

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  6. leetcode 60. Permutation Sequence(康托展开)

    描述: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of t ...

  7. leetcode 之 Permutation Sequence

    Permutation Sequence The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and ...

  8. 【Leetcode】Permutation Sequence

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  9. leetCode 60.Permutation Sequence (排列序列) 解题思路和方法

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  10. 【leetcode】 Permutation Sequence

    问题: 对于给定序列1...n,permutations共同拥有 n!个,那么随意给定k,返回第k个permutation.0 < n < 10. 分析: 这个问题要是从最小開始直接到k, ...

随机推荐

  1. poj1062 昂贵的礼物(dijkstra+枚举)

    传送门:点击打开链接 题目大意:买东西,每个东西有了替代品,拥有替代品后可以有优惠价格,每个物品的主人有自己的等级,等级超过m的不能直接或者间接交易,问买1号物品的最低价格是多少. 思路:一开始想到d ...

  2. linux输入输出及vim管理

    一.理解系统的输入输出 输入输出系统是计算机重要组成部分,是沟通计算机与外界的桥梁. 二.管理输入输出的符号 1.输出重定向 >                       ##重定向正确输出 ...

  3. java——数组栈 ArrayStack

    栈的应用: undo操作-编辑器 系统调用栈-操作系统 括号匹配-编译器 以下是动态数组实现的数组栈: 定义动态数组: package Date_pacage; public class Array& ...

  4. 操作集合的线程安全考虑——java

    运行场景:多个线程同时调用ArrayList存放元素 两个线程A和B,在A线程调用的时候,list中暂时还未有元素存在,此时,list的size值为0,同时A在添加元素的时候,add进了一个元素,此时 ...

  5. JAVA生成word的几种方法对比

    首先介绍几种java导出word方案 1.Jacob是Java-COM Bridge的缩写,它在Java与微软的COM组件之间构建一座桥梁.使用Jacob自带的DLL动态链接库,并通过JNI的方式实现 ...

  6. Selenium + Python操作IE 速度很慢的解决办法

    IEDriverServer 64位换成32位 https://docs.seleniumhq.org/download/

  7. 2019.03.21 读书笔记 readonly与const

    区别: const是编译时常量(指反编译时看到的源码是常量本身,而不是变量),自带static,只能修饰基元类型.枚举.字符串,readonly是运行时常量(全局变量或者构造赋值),不受类型限制,但在 ...

  8. python pd.read_csv/pd.read_table参数详解

  9. JS 类似contains方法,用indexOf实现

    js提供了另一个方法indexOf: str.indexOf("substr") != -1; 如果上面这个表达式为true,则包含,反之则不包含.

  10. jq回到顶部效果分析

    在浏览网页时,超出屏幕高度就会出现提上点击回到顶部的图标,点击即可回到页面顶部. 用到的知识点如下: 1.首先控制图标的显示和隐藏,先要获取浏览器的高度. var wHeight = $(window ...