appium_python 怎样实现参数化自动生成用例
1.对于一种对同一个页面同一点 要用不同数据测试形成多条测试用例,如果复制的话 会让代码很冗长,并且并不好维护,现在用封装的方法把 不变的代码 和 变化的参数 分别封装,形成动态 生成测试用例 ,主要用到 python中 setattr()重新定义属性的方法实现 ,具体原理为:如果该对象中没有这种属性,会自动加上这个属性,如果存在,则忽略
好了 上代码:
# conding=utf-
from appium import webdriver
import time
import sys
import re
import HTMLTestRunner
import unittest
import xlrd #excel驱动程序
from test import test_support
from xlrd import open_workbook class Login(unittest.TestCase):
def setUp(self):
pass def clear(self):
pass desired_caps = {
'platformName': 'Android',
'deviceName': 'FA56GB105163',
'platformVersion': '5.0.2',
'appPackage': 'com.zhonghong.www.qianjinsuo',
'appActivity': 'com.zhonghong.www.qianjinsuo.main.activity.qjsMian.main.LoadingActivity',
'unicodeKeyboard': True, # 使用unicodeKeyboard的编码方式来发送字符串 ,可以实现输入中文
'resetKeyboard': True # 隐藏虚拟键盘,防止遮挡元素
}
driver = webdriver.Remote('http://127.0.0.1:4723/wd/hub', desired_caps)
# 休眠15s等待程序启动
time.sleep()
driver.find_element_by_id("com.zhonghong.www.qianjinsuo:id/rb_zhiye_service").click()
print("aaaaaaa") def getTest(self, arg1, arg2, arg3, arg4): # 定义的函数,最终生成的测试用例的执行方法
if arg1 =='': #判断是否为空
asx=arg1
else:asx=int(arg1)
add=int(arg2)
eee=arg3
print(asx) self.driver.find_element_by_id("com.zhonghong.www.qianjinsuo:id/textfield_et_phone_num").clear()
self.driver.find_element_by_id("com.zhonghong.www.qianjinsuo:id/textfield_et_phone_num").send_keys(asx)
self.driver.find_element_by_id("com.zhonghong.www.qianjinsuo:id/textfield_et_pass").clear()
self.driver.find_element_by_id("com.zhonghong.www.qianjinsuo:id/textfield_et_pass").send_keys(add)
self.driver.find_element_by_id("com.zhonghong.www.qianjinsuo:id/login").click()
time.sleep()
ee = self.driver.find_elements_by_id("com.zhonghong.www.qianjinsuo:id/tv_error_text")
self.assertEqual(eee, ee[].text) @staticmethod
def getTestFunc(arg1, arg2, arg3, arg4):
def func(self):
self.getTest(arg1, arg2, arg3, arg4) return func def __generateTestCases():
data = open_workbook('D:\\test.xls') # 打开文件
table = data.sheet_by_index() # 遍历所有数据
# datas = table.row_values(0) # 获取整列数据
nrows = table.nrows #获得行数
list = []
for i in range(, nrows): #忽略表头 ,开始遍历
datas = table.row_values(i) #获得每行的数据
list.append(datas) #加载到list中 print(list)
for args in list:
print(args)
setattr(Login, 'test_func_%s' % args[], Login.getTestFunc(*args)) # 通过setattr自动为TestCase类添加成员方法,方法以“test_func_”开头 __generateTestCases() if __name__ == '__main__':
suite = unittest.TestSuite()
suite.addTest(Login('test_func_smillphoone'))
suite.addTest(Login('test_func_longphone'))
suite.addTest(Login('test_func_nullphone'))
timestr = time.strftime('%Y%m%d%H%M%S',time.localtime(time.time()))
filename = "D:\\result_" + timestr + ".html"
print (filename)
fp = open(filename, 'wb')
runner = HTMLTestRunner.HTMLTestRunner(
stream=fp,
title='测试结果',
description='测试报告'
)
#suite = unittest.TestLoader().loadTestsFromTestCase(ContactsAndroidTests)
#unittest.TextTestRunner(verbosity=).run(suite)
runner.run(suite)
#g_browser.quit()
fp.close() #测试报告关闭
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAj0AAAC3CAIAAAB2R3jBAAAgAElEQVR4nO1dW3Mbx5nF78gfYN7yhkdU8T+gSltap2xVHDtELq7EiRPHZMSsk8omcYJaO6PsRhITInE2BlVrO2Rg2ZIpArYpX0SYtiSTQ4m6khJFSiIIUqQulrAPAMFmz9eXGQyAme5z6pRqpqenu7/LfGcGHAiJ0uyaSTx8fGa5es9d2nSXNg8fnylfWu/6kkDQL5HGYBzZsbxNlGYrJnFofGalem/uxubcjc2h8ZnyhfWuLwkE/RJpDMaRHcvbRHG2YhIPjc82HXdofPbUhfWuLwkE/RJpDMaRHcvbxMTsWlz41O9f5+jtc2jcXVm/N7e8Nbe8dWjcPXVhvevLBkGWSGMwjoxU3iaKs2tiLg725zOjjd2R4UIq6+4cnSynM/nUNre7uZn+8siuQbwtAfnU719/9KjG0tvn8Li7sn7/3Mrdcyt3D4+7Uxerrc9rBxcH+wuDk/TRkeFCenhxeze0gNpJpHErHBkuNCsSSyeb31WdKDrZPJPGYo6W0sOLxdFSKlNyum1vdBipvE2U3DUvD2R3BIlm1i1NltNZt97/SK6QGauf62YGykd2jbbdslvndsahFkCy7jh5n8Pj7s2N++dv3j1/s+E4/fFt51gpxceuwQPZwuBkc9cbYtAHkcZKHskVmCpROrD7UL3UqGsUkaVuJsNmsoBjpXRusb7hq0CZzUjlrfB5y8nu3H072TxxjzNZTmfd+r0JcxPkZpp501/K9O+kUTpbSrd2n153HLnR5NC4e3Pj/vyte/O37g2Nu5/M40ZVzNGS/MpvxHSynO4vDwrKhNYNLMgQaeyHbqa/7AwX+MRrVpLRUmpXVdn1EZGjvv8uZeQdMurHOEsYqbwVvpfBhTwzWhkZLqSHF4qTU+n+qZHZSnFyKp11i6PF9PDCyHAhM1o/0c3UjzbJ9ucO+eS2mxrbdTZb6qQc1/0/V0aUo8X08ILoaDOmjbg32hcGs4V0fyEjPhGUE2msZjMz60WGOcSUmp3OqUxhcJLZ8Ay4O4dV9EwKFiOWt4kJd42kky3sn2xu5/vG1vK5Qjq3ODFZTg+U8+7axGQ5nXUnxkrp3GI+V+gbq3d2++pHt5lvPPKXHOJzwp0pdFh3U3O76Ti2z6HxuZt3Hsyv3p9fvX9ofO6TC1X98e0keU+azi1ud3D72N3Jcl+u3DdQ6svuijKoT6SxDhv1Z6y0q+a4a0ypYTs38tZ7aEJ8lpD1ytZtD0SNkcrbRNFdI8k/b41tH5ospwfKI+7254RjpXRucSRXyIy5u5+4C4OTa0XXzQwU0gPlkbFSOltKD5QH6x8/umtFd3FwoOQIZpeTfafl0aMae+jQ+NytOw8urD64sPrg0PjcqQvrAca3mIuDA/lU1m22jOQK6YFCOrdYbGRFYXDSzQyUnVxpO45gQCKNpXQzmVIm26g8I7lGEo7kCvUWtkA1q9OuqlUvU972XQVqbSRX8LS7GeZckGMU8jZRciskD2QLg5P1bTeTKR5wK6XJqfTOyxSV0uRUOuseyRUyY5UjDd0qHth9eqN9YOpIvf/A1JGxYjq3UHIrpbFiY5xAZF9rYdsPn5i7tfng4tqDi2sPDp+YOzW/FngK6zjW+JiFbTyQY0I2OZXOuiXXzQxMHWlsd3vNMSfSWMaxYmqnpCwMDjRLCtttYXBgp+x4dnedy7TsKlaNlnqZEg4C7rDreZsouhU5nWzRkR3NNz5Tdt1MZqenky0MTlac3NSI62YGpkbcSnGsmMq6xcYrPY1MUs7ul4dPzN3e/PLS2peX1r48fGLu4/m10KcwhQuDA8o3shqBS+cWim4zZI2AOtl8ZqzrVphJpHHRrdSfhLgcG8kVdrcsDA6wBYrbrRTdSnGsmMpwjbuKVaOlnu1upYjcDsqO5a1It+RFrRlyNzMwNTI5lc4UHUq3dvq4lZFcIZ1bKLqV4uRU2pOOsXOcgWzcWBDt6dyCk82ncy6bFencVCbTlpsPEGlcpKpK0atbk1NpRm8o3VoYHMg3Ko/wrAqnWzvXAtETFLJzuqX6ZrLblyk5dMvi/v583+jaxOzaxGgplS31ed+5qPfvL+cny+n6WZPldCbfN1xOZ7bPDZXbjnt4ae1h3XFd/555bDhaSmVdsr3+HYZ8o8Xta26PllI77WBotD6N3b5mARktpYcXm4fywwWmbrh9fBlZ3N/P1qvF/f15IkWJvHV3ylfWbZyYdfPDBXZ2UM6O5a3oPfjmSxZFZ7ZSnK2MMF+hqL9R6mTzu18tdTPbnYuz289b9fb+qcFsPjPqZjL51M6r8AuD/fXvRoT5fuTQxLnbWw8vVx9drj4amjj38Xz33x+NPpt/tabfFeZfl/d81QEMm5ansZPN8y+7N/+43iwy9FvvC4P9bBViK8zC4M7XSZsnNht3ztpmvQbSL9aDJDuWt4mJ2YpJHJo4t7r18Mr6oyvrj4Ymzn10vvtLAkG/RBqDcWTH8jYx4VZM4lDx3Ordh1c2Hl3ZeDRUPPfRfPeXBIJ+iTQG48iO5a1punX4xI7jDp/ABQ/GkkhjMI7sWN4mJmZXjeGBt+aOnV1avfvw6sajqxuPjp1dGjpxruurAkFfRBqDcWQn8zYxdOKcMTx29sbq3YfLm4+ubtTqPHb2RtdXBYK+iDQG48hO5m3ierW2tvXQGN668+h6tcax66sCQV9EGoNxZMfyNjFxrwaCIAiCcWHiQP59EARBEIwLE38/7oIgCIJgXJh488PrIAiCIBgXJr710usgCIIgGBcmagAQEjbv3h8+OvXCn97+x/hnM5dXZi6vdHtF4eBbL73e7SUAALAD6BYQDs5cWHruj2+NnDhdvXNv696Xdd578NAAQrcAIFKAbgEh4MyFpef/5+jpC8trdx6wXN+KAS9euVb+7AtJB+gWAEQK0C2gVWzevf/8n94+ffHmSvU+x9vrUeePnt//2ONPff2Jp3/2H78W9YFuAUCkAN0CWsXw0an/fff0tdt3vVxajTQPHPzrnr37Zuav/eBHA7/8zcuibtAtAIgUrNCthAeio91aYXxx9UblZ0PH56+vX17erPPS0saHn86Nvl068ua7x4qnLl6vXl3ZjCafeDKT+d5zym7QLQCIFGyp1F6tkrcDmni9dDb39mfnrm3UObe4fvLU6aPH3vu/f77zt3+8efAv+T+/+oZ7ZXX++p1I8Yc/+fmevfvq3Pv1J+WdoVsAECnYUqY1hQq65Re/frX4ztSVs1fWG5xfmpo+U/rgE1a6Rt85ObuwHjW+9MrhPXv3HRj6h7IndAsAIgVbyrRIt0TdAO+Hq6RzXjj49ntnb0xfXKvz3OWlGXeek66/jRQ+v1SNGp/50cCevfs+dpc/v1Qtli+Onih/fqlaKl98q/Q51xO6BQCRgi1lWuePWBAtDkrRqtVqz/3xreLp5Y/PVeq8dO3W5avXOOnKv3Hs1PlK1PjY408/8eR3T52vfOf7P338G9/O/vffXz742jczz/7gJz/nekK3ACBSsKVSK5+3IFoklGL/y9z4mycvfTBzu86ZK6vLK7x0HS19dnL2dqR49OTcnr37fvCTX5ycvf2v92b2/+oPe/bue/zJ75CdoVsAECnYUqzlugXRkkDunOGjUwcLZ06cvlXnxJlbiytVVrqKk9MTny8Xz9yKFP/zlb/u2bvvNwdere9+/8cv7tm77/mf/27sg/PeztAtAIgUbKnX+HiwTThzYWn/0MTbn640eWx65fTF2+ev3vxi/tqHp68e+/TG8emVqPGZ51587PGnj0+vPJl5tu97z7889Oa+bz6z9+vf3PfUM97O0C0AiBRsKdl4D75NuP/gy1/mxv/0r7Njn9zwsjC1HDX+279/w3n1ncee6HsxO1yYWh45Mas8BboFAJGCFWVa8l6czitzgBxXb1Sedd56rXj59ZPXOb750VLU+MOBl7733C8Gf/9n/VOgWwAQKaBMAyHg6EfuCwdPvFq8+tr711iOfGACoVsAEClAt4Bw8Hrp7Hf/a+zlf37x14nFJv9eNIHQLQCIFKBbQGi4cO3W4NDxnx4u/mZk+g+j7tDxq3951wRCtwAgUkh0/ReXQRAEQVCfeN4CAAAA4oTEzLUtEARBEIwLoVsgCIJgnIi/b4EgCIJxYmKoUG4H7335EIwmbYiODTbaQ0STZNVJ3nP/bB6rTlJpe+LsQjVcvvHp1lChvHn/ARhN2hAdG2y0h4gmyaqTvDtz0DxWnaTS9sRr798Il3Xd2rh7H4wmbYiODTbaQ0STZNVJ3v3ij+ax6iSVtrdLt9Y274HRpA3RscFGe4hokqw6ya0zr5jHqpNU2t4u3VrduAtGkzZExwYb7SGiSbLqJLdOZ81j1UkqbQ9Htz50K5xu3apuGsOe3lTX1xAiOxadnt4UR/Ns7CK75dvOs+vRjKarq05y87PftpXeS7jdM25+9tuqk1TaHoJuTc6s3r13n9Ot5codY9jTm+r6GkJkJ6PDua5jnjQsA6Pj2K4wCtFkPRwRb1ed5Ob0r9rNnt6UZLcdrDpJpe2t6tYHX9zeuLO1cWeL062l2xtmsKc31fzXDHYyOpzfOuZGkzJQ6dVOOrYrjEI0u5XJElad5J3yi+1mT2+K22g3q05SaXtLuvXemVurlY06Od26dnPdDPb0ppr/msFORof1Wyd9aFIGyr1qA6MQTc7nUQhB1Unemdrfbvb0priNdrPqJJW2B9et4umV5ZuVJjndurq8ZgZ7elPNf81gJ6PDfjJuqo2dp0nZqMMoRJPzeRRCUHWSG5+80G6yl3AHptv45IWqk1TaHlC3Tny2vLh0kyWnW5eXKmawpzfV/NcMdjI6rN866UOTMlDuVRsYhWhyPo9CCKpOcuPjH7ebPb0pbqPdrDpJpe1BdOvd6aXLCzc4crp18dqqAeTepen6ekJhJ6PDOa1jPjQmA3W8ajyjEM1uZbKEVSe5/uGz7WZPb4rbaDerTlJpu2/dOl6+fv7iNS853Tq/cNsA9vSmyO1Ys5PR4ZzWMR8ak4E6Xu2kY7vCKESzW5ksYdVJrp98pt3s6U11YBaWVSeptN2fbr1z6trsuaskOd2au3LTAPb0psjtWLOT0eGc1jEfGpOBOo41JjNFjEI0I+jwqpOsfvDtdrOnNyXZbQudpNL2dv1/GbOXVuLO5seD3Hbc2bHoeL+0aJ6NXaRJOSln16PZrTSWs+okq+8/3VZ6L+F2z1h9/+mqk1Ta3i7dOnthGYwmbYiODTbaQ0STZNVJrpW+YR6rTlJpe+KNT7dC51ChfPr8DTCatCE6NthoDxFNklUnuVZ83DxWnaTS9nb9biQIgiDYPladpKlU2p5YuLkVOocK5RoQVUzPLHZ7CW2HDTbaA0SThKlu0bELumUdTE13FjbYaA8QTRKmugW6BRAwNd1Z2GCjPWg9molEIsChiMPUJIduAQRMTXcWNthoD7zRTKjg7e89iz0UR5ia5NAtgICp6c7CBhvtAalbwXZFkhZHmJrk4ehWT28KumUS4p7u5A01B5GNOucCUUObdKv5EBbWOjuMuF/IIrSqW83vSEO3TIIB6R5Yt3TOBaKGVnSLu1NhPySEbkUTeN4CCBiQ7tAtqxD471ucMpHt8c0HAy5kEt3XLfJmh9v1fnRD5h97l8Rtc43ecciRvfkqOWQSmmnh13tcu2bUarv/Ku49hZzRb+xENorOJQeX2C5amK9dyTiABGF9TshtsP/GEdCtNj5vKXNIsu09RKYgebp8fG/KylPfJLBpEcx7frfJAkHOVRNHmTxXBM5GzXmVtih91co4gAjQLRLQrS7rFteBg2go+fjcaFwHUrdE8xoGnZre3NUssvJ2X3cJAaLsRSu61dyV266jYX7HAUi0+B68NwmhW1FGpHWrJvioRJJGfisaWU00K6nB0NQtSX0ndV2zZOjPK+og6sOiRd2SZI5+/wDjACRCfJ+w5glKfP0P3eqObpGNYemWaEzolt+aLvKMZjtZHaKsW/LMkRzSNAq65Rdt0i1yN0aAbnVIt9j78cDVgTegPboV32xWohXd8rtdo1wtmYvs6R0/sG5JMrCVzCRXBd0KC963bLgOrdwVxdf/0C2hYrEMplu17Uu6Wb/YDbIGeQ8ldoMcWbJLzl7z1BrJkkyC970M0mrykE5nbjrW4d5DIv+T43jjqGOj5FxlO3eUPJE1U7Rm/XEAL8LSLVGMQlhiNwDdCpn4/laUIXneMgadv6RN9WQUoJ+x5H2A6M4p7jcN0C3olkXgvr8V3+tWgo5d0gb7MDowtUC3gkQi8bWvfiVhIup2Kcxv0w9WTs8sgiAIgu3g1776FbMpNz9RO/u70Fl1kp256QACYNqCu1cbbLQHiKYXCcuft6BbtsGGKmCDjfYA0fRCs77HDtAtgIYNVWBa9QaaqNFvZ/0OrcPvGnwtib3h9TuvaBwO+oNwsCFj/QK6Bd2yCzZUAa+NCeZlaHlJFRXu1qVL+QmJr9OVC5AIs6+p2aN+16Bs14ENGesX0C3oll2woQpIdEvSUhN8d1B+iuZRX/298qAprvJBgi1b5AHoVhcB3ZIpEPu9Y+hW6PB7kYdSFDSrgGZZl7eTQ8lv9r2N8v4kJDZ6R5NIgo486B/127nZQUe0OHOUp2gekgyrzBC/UROhRd0iZxetytdqW7SrFSSgWxLRkuxCt1qB38smlMusDmUVkMxF7upUVXkH+ZjKWumFTqUTlV1uW167dcYM3JlbjEQJvD39DkUOS56rv/6w0A7dah7y1d5Kz3CRgG5Bt7qFsC6ncHVLNGYw3fJWjVasC6BbnOTIi7VSmSTQOVffFqW3fcmJZC51jYi5bkkA3YoaQtAtuYxBt1pHvHRLpwNZbUWNnKQFm5GEzt+3RFOIdE45VOi6xa2EO0spJ5pzaS5DOabknoB0oz68b4d6VyWaQj6vZrs3H7ieollEU3sHkYxDmpaAboUrWtAtfbR4OSnbSYSiWzqXaIIqdt6eXDdJodE3s5X3CcmVN9cmWgZpkbKbvNpyU0uWLWn3tSTyqMj2wGP6Bff0LNkWBaj1C0riWPmSvKOR7ZqBY9uhW2GKFnRLH61fTvJ2Eq3rln5dVvav6ZUA5SAc5LolWTO5JEntJgfx6x95T25SUdWTb5MWSUBOrbn+0IupSLe8k7ZVt8jdDrSLQgPdClO0oFv6iKNuqVNKdclJ+ksmatFGeeH2duYqoN+yqOM9uUUi8SDdpRxWMpd+QDUnEkE+iwSizwm9i9QPkN92UTZ2uJ3tAN0KU7SgW/qInW7pNOpf89xuB3RLpFLsNtuHK7vd1S2JEkRHtwLPIoEoY72LgW7FHSHoFt4nbDfipVvB9EbZoWO6pSMAoiVJyqKvoPjSLa9kkhs6w4aiW6ThmnEJS7fkVkdHt3T6SKKmcy50S6hbHKFbYUFUN8Nql0D/+1vyuUSHJKMp+8vH0bFOZGNCUAjkLeRZom0v5HP5Ole5JHkaSOZSOlbkukSXdEuUTuyS2DXrJHOwdvkutxLOG+Tg8l3uFCN1q6b55csAHwNCt2ING/7XHPn/l8Fuk5UlsbtSs2WRKyjKlYgKqAjKNbOjiYyS9PQeUlqRYCRBvgzJLPI+ckQhY6OmEEbqVj1Vmr/PIusJ3bINUagC7YYNNtqDrkdTU+A7iYRxv79V86Vb+L1jEATBeLHrv0fcjh841v/J48TCza3QOVQod+q2A/CN6W7fvXYANthoDxBNLxKWP29Bt2yDDVXABhvtAaJJwjy3QLcAIcxLdy+mPd9U9fYRXRi+Out3aB1+1+BrSdydbyjjeG+og8GGjA0AU92iYxd0yzqYmu4svDYmpO/1kT25ltalS+ejEv3TlQuQCLOvqdmjftegbNeBDRkbAKa6BboFEDA13VlIdEvSUqMeO7iqLZnUb2mW9PfKg6a4ygcJtmyRB6Bb3YWpbglBt9gvHcdFt0TXqm3tImimu98C1K12EhIbExREE3knlS/D1yKVnZsdJCtstnDmKE/RPCQZljyRdK9+cpKYpr53HHi0AOj8jDqAbglFS7IbTd0SXa62tUugTAtRaYhauwRaqa96XGhWaknt1hkzcGduMRIl8Pb0OxQ5LHmu/vrDgs7Tc7vR+RmVgG5Bt0xrl8C25y1OcuTFWqlMEuicq1/3lRH3JSeSuZTGQre6MqMS0C01Y/Q5IYuoFdkoFHfbdMvX6ZySkU8h8hWGqFvcSrizlHKiOZfmMpRjSu4JSDfqQz+a3khxcZQsWN5fMk4r82p6gAR0S/0nLn3Rio5uSZLbqnYOluuWTjFlO7Mb7L+S5UmW6q1uktLGTS1ZtqTd15LIoyLbA4/pF5q6RRqr4xDN/pJTgs0rMkQT0C0Dn7eiVl671e4FdEs5MletJLWbHERftyQmeHVLYoh+SSX1zwtyas31hytatUBvhyp1QtMoX+NotpOuDgDoVsjS1XXdilptjXhNb+saImKjvHB7O5Nq4a3jorXpWCG3SCQefiuvci6lY/1OJNfCAGiHbrFLbWWcFttbAXTLnPcyatErrJEq6DW7dUukUuw224cru93VLYkSREe3As8iQbuft0IcB7rVOmzUrQ6nXWTbJbBWt3QEgJvLKx7elfhasC/d8komuaEzbCi6RRquGZd261ZNwzPeQ/I7ANGYoilaHMcvoFuKlzJi9L1jUUmyrV0C/e9vcQNGrd2XjQlB4ZC3kGeJtr2Qz+XrXOWS5C6SzKV0qch1iW7oltxSUeZ4dyXu9Y4v3/U1LzdFMIfUAd0KmV3/+xYgganpzkL+/2Ww26Lyx26wxY4rQMqViAqiCMo1s6OJjJL09B5SWpEQ65Pm6REs0F4vke1RhqkXMnQLIGBqurOwwUZ70KZoem8XQnkM6hhMTXIt3RoqlNvBTv70JwiCIGgP8bxlHaYNvU1jYYON9gDRJGGqW3Tsgm5ZB1PTnYUNNtoDRJOEqW6BbgEETE13FpyNoncKyHN9ddbvIDlR+XqI33F03vWIEWzI2AAw1S3QLYCAqenOwmuj/L0+sifX0rp0+RUV7i1B+Vm+ZDhesCFjA8BUt0C3AAKmpjsLiW5JWmqCd8zkp2geDdBfNDV0C6iZ65bQdCum/x88QKLFdNcs9/J2cijlY5D+p14SG309b2mqneZR/c7e5enolgj6S4omWslYkRN8OSeaboRuQbcsQuB0l5QAcleiB5odlGOKoJX6KiltCoZEQnTGZI/KoVyMzizmofUCLfKYvicj6HPolkK0oFsmIfTnrWC65a3UrReXJlgbOcmRa4ZSmSTwe66yJ3SrDugWCeiW4kkLumUS2vE5obIDKVGiRk7SWtQtX4N4H6301xOubpGCSp4oEWNy/bFDM5reuHDt5G5NW7dE49fEySlfANk/rKBAtxQfD0K3TEJbdUt5SbN9RFWD7ObrUm/lfUJyhc01kDZyjZqLVHpSNKnkxFjrkwjep2d2l9vQ2ZW0S8YXhYBcQ7B1+gJ0C7plEdqnW5qHRNew6BRJyRBBrluStZFTSySEHETUQQfsCMpCqTTEDHC6xR5qh275Gj9AOxnxAIBuyf6yFeCnTKBbUUabdEt5Bfq9dFu5RW39eYtTDrlu6bR4oe8xyTa3Zh3rYgfDdItcSQBAt9SvZuB5yxi06T14ZaN+jeB2Q9QtkUqx22wfrvpHWbcCzxJ9QLdIQLegWxYhIu8TKjuErlusdMmfSLxTS3RLvyYG7kDOqFkBLdQtb0zbp1uSNfgdxy+gWwrRwueEJqH1729xdUEiA3Jt0O8vGYdEiH/f8vaRlCflyPpHRbM3dy3ULS4HJLvchjJp5e3yXXY6X+tsMTTQrZAJ3YoyTE13FvL/L4PdJssHJxjeIugdSmc65bzkuZIRlKe3WBkjgk5mbIw8ZuqFDN0CCJia7ixssNEedCyaoTwGdQymJrmWbuH3jkEQBMEYEc9b1mHa0Ns0FjbYaA8QTRKmukXHLuiWdTA13VnYYKM9QDRJmOoW6BZAwNR0Z2GDjfYA0SRhqlugWwABU9OdhQ022gNEk4SpboFuAQRMTXcWNthoDxBNEqa6pVXdwv9PaCRMTXcWNthoDxBNEqa6JQTdwvOWeTA13VnYYKM9QDRJmOoW6BZAwNR0Z2GDjfYA0SRhqlvC0S2/HxJCtyIOU9OdhQ022gNEk4Spbgnn71sBHr+gW1GGqenOwgYb7QGiScJUt4T8PiF0ywyYmu4sbLDRHiCaJEx1C3QLIGBqurOwwUZ7gGiSMNUtIb+XAd0yA6amOwsbbLQHiCYJU90C3QIImJruLGyw0R4gmiRMdUsInxMG+NIxdCviMDXdWdhgoz1ANEmY6hb8P08AAVPTnYUNNtoDRJOEqW6BbgEETE13FjbYaA8QTRKmukVLt/B7xyAIgmCMiOct6zBt6G0aCxtstAeIJglT3aJjF3TLOpia7ixssNEeIJokTHULdAsgYGq6s7DBRnuAaJIw1S3QLYCAqenOwgYb7QGiScJUt0C3AAKmpjsLG2y0B4gmCVPdEo5u4XvHhsHUdGdhg432ANEkYapbQtCtplxBt4yBqenOwgYb7QGiScJUt7SqW/i9YyNharqzsMFGe4BokjDVLdAtgICp6c7CBhvtAaJJwlS3hKNb+PuWYTA13VnYYKM9QDRJmOqWEHSLlSv8jokZMDXdWdhgoz1ANEmY6paQPyeEbpkBU9OdhQ022gNEk4SpboFuAQRMTXcWNthoDxBNEqa6BboFEDA13VnYYKM9QDRJmOqWcL6/hfcyDIOp6c7CBhvtAaJJwlS34P95AgiYmu4sbLDRHiCaJEx1C3QLIGBqurOwwUZ7gGiSMNUtWrqF3zsGQRAEY0Q8b1mHaUNv01jYYKM9QDRJmOoWHbugW9bB1HRnYYON9gDRJGGqW6BbAAFT052FDTbaA0SThKlugW4BBExNdxY22GgPEE0SproFugUQMDXdWdhgoz1ANEmY6pZWdYv90rGvrx5Dt/DJyn8AAAA+SURBVKIMU9OdhQ022gNEk4SpbglBt8ht6FasYWq6s7DBRnuAaJIw1S3QLYCAqenOwgYb7QGiScJUt+jY9f/vIfPFS9RnkQAAAABJRU5ErkJggg==" alt="excel" />
username | password | duanyan | 用例 |
1111 | 1234567 | 请输入正确的手机号 | smillphoone |
22222222222 | 1111111 | 请输入正确的手机号 | longphone |
123456 | 请输入手机号 | nullphone |
执行结果:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABWAAAAGwCAIAAACo5Fu2AAAgAElEQVR4nO3dP47juKIvYG2ht9CpwtlCb0FbmC2c6AIKb3SSi9nBRNrCvKBvfoEHDNy4wdvAYIICGiig0cAAfIFtmZRI/XG5bFn1fSDOKatkSRZ7iuLPFFX9v79/KoqiKIqiKIqiKIrywUvV/Z//qyiKoiiKoiiKoijKBy9VAAAAAD48AQEAAAAgIAAAAAAEBAAAAEAQEAAAAABBQAAAAAAEAQEAAAAQBAQAAABAEBAAAAAAQUAAAAAABAEBAAAAEAQEAAAAQBAQAAAAAEFAAAAAAAQBAQAAABAEBAAAAEAQEAAAAABBQAAAAACEuYDgW9d23xZv6++vv7Vt2/729e9owfT7v3Vte35Pdmd/f/2tLW0jfjMAAADwBhMBwbn/feyA969Scec8DQjSt8/to5eGAadNjpYnby7t4PLmZQQNAAAAfFhTIwiiDvZvX78WA4Ljav0PfT97snN/EvXx+9WjtXPLsm+eO34BAQAAAEyZmYPg3Mf+7bffhh31Y/d8IiBYEhEkffy/v/6WdtL7vZ8WFkYxDJ13tjRycKsCAAAAH978JIXfuugWg3UBQd/37r5+65Z/mz/MA/qdCggAAADgfSx+ikEfEHzrjn3pRQFB+Pvr12/H/18bEKTDB7515dscZgOCVfsFAACAD2hmDoJLn/nKgCDa1rqO+ulr/T4eyPThzUEAAAAAN1IMCPredfJQgsUBQXI3QLnnPZxlYLT3qR784oDALQYAAAAwbcljDtvfvv79zgHBcBbD3GwDl6OYdNmSgAAAAAAWmp6DoO+Pd9/eGhBkxwScNzt+zMG37rhscHPBdQHBQgICAAAAPqy5SQr7eQiumYMg/mp+ZUCQbmDNgw4FBAAAALDa6qcY9HHAbQOCTOf88o58enCV0j0NAAAA8KHNBAR/f/3t1Jd+a0AQbS/un5dmKcyNFbjsYnYYwIKRBiWSAwAAAD6gmYDg0sX/egoI0lsNbhYQLJylUEAAAAAA72E6IIi+3z8FA905FrhRQJCuc56aMCQTCESjCwQEAAAA8B4mA4Jid7779q3ru+2LAoLTZIfjLSZL+s0vP6KzmWcVFpMFMxMCAADATEAwfMTAoJc97FsXA4LL6sN+en+rQnIDQdT7T97w29dvawOCdIfJBoajDAwdAAAA4OOaCggGfe7oZd+3TjrVMwFBTvctHhRwWj/eQSLq3xcVbzE4/mIwBCG3H0EBAAAAH89EQJA8YODSkx70rKMxAElPPFmpqPs2Hv1ffCjiioBgOPJgPIlBeZSCWw4AAAD4eMoBQdyV7nv6Uff5MqBg0GsfzT+Y7fIXZx5MhwBM3jEwERCctjAaDVCexOD4K/kAAAAAH9L8JIWXpwoMO8/9RIXxSIG04/2tWzZiP5dAFI8o27+fmaRwfgMAAADwgU0/5hAAAAD4EAQEAAAAgIAAAAAAEBAAAAAAQUAAAAAABAEBAAAAEAQEAAAAQBAQAAAAAEFAAAAAAAQBAQAAABAEBAAAAEAQEAAAAABBQAAAAAAEAQEAAAAQBAQAAABAEBAAAAAAQUAAAAAABAEBAAAAEAQEAAAAQBAQAAAAAEFAAAAAAIRnCggObV1VVVW3h0cfCQAAAOzOTEDQNVXi3D0/LW+66/Zafvtwh72mvXdAcEok0g8+/M34cA5tnVl6+VyLPkBmI5M7XbqR+GjmKi/z9rh2Jt8+rMZ45UWnonTyy5UCAADAm0wEBMOv7I+vj129dwsI1qzyvg5t3e/80NaXQ+ma/udkedR5TXuu6Vrzu81tpLjTNRtJf1neRP7tSWBQDh/Oh5v97eJT0TWlk59fDgAAwBuVA4LskP6uabrssILkm92k/9lvp2vrqqrqti2MSkiNAoLkeAYb7de8HFrcc0wP7vKb09oLvoiO+sNRV330arBqv8rqr7qHG5nb6aKNRMsObb16BMHEMYz66oXPXD4VU739UhgxE1IAAACwxmxAkO/FT3+/n+vLJxu6ZgRBfqPx5k6rp9+QpzlHutXlAcGlOzzolY47qZl+dV1fTsGyHu30Xhb2jMer9R30awKCZEHa1V8YEEyciomAoPQrIwgAAABuaWoOgvGogGHXOu2ejeYPaLow7KGH8ttTC0cQHOIDzfT7h3u/5s6FpCe6NiDI3IVw/O3k/fxLA4I1G4m/878qIEj/QSyfg+C8keKpmDqCXKhSWg4AAMD1ljzFIDMx3Kiffe4RjqcoeGxAUJj0cEVA0DWjWfLWBgTlgfol7zCCIBf3TG4lNxQi3dqis3hZ87pT4RYDAACAuygHBNF0cCGEQS982H0fvN5OQPC2hyPmusFr5yAYrHFVQHC7OQiiX60cQXBdSJGsedWpmFhx8QYAAACYNRUQJB30qXv5Jzvsjw0IMnP2H9o6/RSFfu5g6ECyfOKBArlJCguj7MuyG1n+FIPCRtJfXTNJYTr1ZGmSwkP0AIjk45dPxWALXTO4N6KvsfxyAAAA3mrqFoP8nALjX8Zf1R8X1DMBwfjtpZ2/OSCIfz/c5WRAML45YfDAx9F7h7sZ34AxE4pMbqSw03UbiVdY8pjDwdtLUx4MM4vsFASTp2LpFia2DAAAwFssmYMAAAAA2DkBAQAAACAgAAAAAAQEAAAAQBAQAAAAAEFAAAAAAAQBAQAAABAEBAAAAEAQEAAAAABBQAAAAAAEAQEAAAAQBAQAAABAEBAAAAAAYYsBwaGtq6qq6vbw6CMBAACAD2MiIOiaauBdOu2n3TTd6fU9AoLTPhbsp7Tm4i0Mz+Lxc47P7ZLN9OdosIV+eXGz0eEO9pTdzsRyAAAA9mk+IDh3Jwcvb2YYELy/rul3d2jrqV2X1ly+hdA1C07ZzErn7n0SovRvSF7kN3to6zSAiQ4+t52F2wcAAGA/lgcEg658+tv4V/0QgK6tT2skX2DHfd3hV951exiOIEjfmzmayzaG36QXu81Rjz55Nejtl9ZcvoVFAUG6uaFT//zQ1unnKx3m7GajDv8VHxAAAIB9WhMQJDHAbECQHdAewugegslbDMovLtlC05W2me2ZD74QH31ZXviePnq5fAthQUAw/QV9PAgg2m78pvweJscV9FsqbWd++wAAAOzLNQFB3R4WjSA45DZXGkSQDQiGh5BJKApbKZvq3i9bc/kWhh87s9rU1/PDrny0XpLCrBw+sGQ7c9sHAABgZ95vBEHcGT73kpO7E+YDgtG995mEYusBwWB7gyOcHL0/vjEj+uyXPa7YbNeM6iW7nbntAwAAsDvvOQdBNlgYvbz3CIIVN9jf+hb9YZSwZvq/eATBTEKR32ymn3/rBAQAAIDntfopBnEnNT8oYBwQpEsG4wLeOAdBdivTT1woP4Ng2Ile/xSD8cs0SRiOqxglC6Xv60eTFKY1kT/oZFnh/obcdia3DwAAwB7NBwSR8ffPuRVycxDE69Z1/saB05tWP8Wg/Kr4tXe0zfFhJp9ycs0FWyhPQVDosy8KCAYbHi4fbXZclcNBGdnt5OsdAACAPZoICAAAAICPQkAAAAAACAgAAAAAAQEAAAAQBAQAAABAEBAAAAAAQUAAAAAABAEBAAAAEAQEAAAAQBAQAAAAAEFAAAAAAAQBAQAAABAEBAAAAEAQEAAAAABhNiDomipRt4d4edMt2ceqla9xaOvkKN9vT+muzmcDAAAAnt1EQHDqC/e94OPrY+d7ewHBpbPeNe+4s67pt3xo63fNIgAAAOB+ygHBMB8IIZz6x7lhBcMv8fuuc27l07LTpof5weAd6VrZL+3TgCB+mR5WtE68k35xdmHZYLcAAADwvGYDgnx/eXpQwCBbGK1cDgjOOx1v+LqAYHRU/V7igRHlhVOMIAAAAGA/puYgGI8KGI4LSLvHw8ECxZXLAUG/iVXfzA/79hM5wjgLyG5kfn+rDxIAAAA2bMlTDDIT85X6/NkpClYEBOVbFRYf4OAd+d/FSweTLCwPKNxiAAAAwG6UA4JoOr4QwmD0f2HegPPr6wOCeP+L++rFnnrXxG/vRxDMvndh179r3GMAAADAPkwFBEm3PZ1XYNipT387mElglACkvy/OZ5D8YsUcBIXllzkDuiZdWreHwsLxIQ0mOjSCAAAAgF2YusWgNKfA8Jd1exiMz68HUw0OV85Nb5DOQTDa5TUBwWDPTVOnaUO6i+zCyXMiHQAAAGAvlsxBAAAAAOycgAAAAAAQEAAAAAACAgAAACAICAAAAIAgIAAAAACCgAAAAAAIAgIAAAAgCAgAAACAICAAAAAAgoAAAAAACAICAAAAIAgIAAAAgCAgAAAAAIKAAAAAAAgCAgAAACAICAAAAIAgIAAAAACCgAAAAAAIAgIAAAAgCAgAAACAICAAAAAAgoAAAAAACAICAAAAIAgIAAAAgCAgAAAAAIKAAAAAAAgCAgAAACAICAAAAIAgIAAAAACCgAAAAAAIAgIAAAAgCAgAAACAICAAAAAAgoAAAAAACFMBQdfU7SGEcGjrKtJ0/e+rpgvh0Nb9osihreu2barjNpJ3hNA11Vi0lX7F5EcAAADgvUyMIDi0ddV0SQJw7K7H/3taL84Bzm+u20PawY8DgkGvP15y2u/4FwAAAMA7mb7FoGvqtmvrPibIBgThMtrg4hwQ9CtchgrUbTvs9UdrDwYsDI2SCAAAAODtigFB3+c/LAgIjm8o9upP641GEERhwLnj36V3JRhBAAAAAPcwNQdBFU0yUAgITl388ff6gxEE5y2WbjGYOgoBAQAAALy3qVsMjp38+REE4xsM8gtPYwzqts0NNqjbw9QohOxshgAAAMBNzD/msBQNDAOCdPKApom/+u9/F40gSMYGGCgAAAAAjzQZEJzvImi60x0D8yMI4mcbDLv8g1sMLnchpPcjzE9mAAAAANzWVEAQfa2fzB2YDwi6Nn2sYTQT4emtozkIjtMcJI81DOXRBEYZAAAAwHuZCAiSnn3dtsXnC3RN3TR13+c/LT2//TKUIDNJ4aGtR1McCggAAADg3soBwbmDf36awbE3n7+ZIHlMYX83wHmkQfS7JCDomqo6TkaQ3DzgFgMAAAC4t6nHHNbtoRsMGzi09alHf+mux939ajTK4Lhe+jjE8aqHth5uL3NAAgIAAAB4H/NPMQAAAAB2T0AAAAAACAgAAAAAAQEAAAAQBAQAAABAEBAAAAAAQUAAAAAABAEBAAAAEAQEAAAAQBAQAAAAAEFAAAAAAAQBAQAAABAEBAAAAEAQEAAAAABBQAAAAAAEAQEAAAAQBAQAAABAEBAAAAAAQUAAAAAABAEBAAAAEAQEAAAAQBAQAAAAAEFAAAAAAAQBAQAAABAEBAAAAEAQEAAAAABBQAAAAAAEAQEAAAAQBAQAAABAEBAAAAAAQUAAAAAABAEBAAAAEAQEAAAAQBAQAAAAAEFAAAAAAAQBAQAAABAEBAAAAEAQEAAAAABBQAAAAAAEAQEAAAAQBAQAAABAEBAAAAAAQUAAAAAABAEBAAAAEAQEAAAAQBAQAAAAAEFAAAAAAAQBAQAAABCuDAgObV3V7eHWx/KRHX7U1ff2EP2w9o132BcAAAD7NRMQdE0VO6UCdwkIuualqi6lbv953/3d1uFHXSXHXy3sit86IDi034dnT0AAAADAyERAcGjrqmq6ZMExFnj3gOCftn6pmp/Rrn/U9Y9n6sle3fe+cUDws6lemua1is+egAAAAICRiYCga9J84OIYELSX0QXRaoe2How3CKFrkp/71Yt7+NlUL4Vdp33atK/bNN/74QbHb84vX57PrnD+sn34hf9xF+1rVb1U1Wvbfk862+Gfts6Nbij3vaf2Muq0R8MoXuPzkQ6vKHfyu2M0kJ5PAQEAAAAjcyMIsh34wW8u/fxk0EHU/b8kBMd7Fi5r52OAf9p62CU+73oiIDh31LvXKvn5tQsLVhh+xO/xG6PhDGlnu/D2hX3vdC/DTnvXXPZ7iIKJrnm5hBSTO+qa08eMNyUgAAAAYGx6DoJoOEA8JGBwi0H/srT8EgV0TdV0XRO9KO36mBGUv2kP6ct4efbn2RWGH/1HPei6Xz5W31cvDB8ImTkIyqsVAoLhfn822eOZ6OQPP+Y5yBAQAAAAMLLiKQZdc/7ufyogiLv8l4EDp9+cIoHj/8U3Hszu+mX4Tftp17cNCAapRD4gWNTBnup7T+4lHRORmeYw7upP7uiQ3A0RZRkCAgAAAEbWPOZwdqRAcQTBaYLD9jxkoGuqpj1Pebho14U+7S0Dgp9N/D1/eQRBOI/YT8btlw54aG4vyQ9rbrIYGsQQL1V1vjFBQAAAAMBIOSAYzRDQNVWVfYpBeitBYQrCePKB4avRrod94+iu+2QKgK6Jv1d/W0CQ9pYzswPEuteZ2QGn7lyY3EthDoIQ/mnr4zlJ7ms4tN/zhzHOF+bvYgAAAODjmhpB0DVVou+XT4wUyD7FoN9amheUJyAYzNKfflF/6py/VNVL0970FoNoy3XzOjGC4PT9/MSTFyf63tN7KT7FYDhRYrSFzI6yoxtOCwUEAAAAjKy5xYCLf9q68CBGAAAAeEJbDAiGd84/Q3n4R3jLAdyrYgEAANiuLQYEm1d+uiEAAAA8JwEBAAAAICAAAAAABAQAAABAEBAAAAAAQUAAAAAABAEBAAAAEAQEAAAAQBAQAAAAAEFAAAAAAAQBAQAAABAEBAAAAEAQEAAAAABhIiD4FwAAADyze/aud0BAAAAAwD7ds3e9AwICAAAA9umevesdEBAAAACwT/fsXe+AgAAAAIB9umfvegcEBAAAAOzTPXvXOyAgKPv9zxBC+PP3Rx8HAAD/+te///grhBD++uPf6c+wcf65PtQ9etU7MhsQHHvJGdd1nE+bm3rzcI8P6qEf/zs+/md8/5MAwIPdrTXSKNxdpll3+u8ve3U1038SEJw/9qrTxh2c/z3Hf0vOlfXn7x/1n+tWFHpy5C0fQXCbC5iZrYz+2/r9z/CY/5bifGB0fO97EgB4rPNFXd8IHBe8059tjcLdnU75qX6ja3juKa2G9T5oj8u/160a14y62ow3dpg/mrcGBGmMGf9ykAv/9ce/R1Fxofs9WPzvP/5McuLf4657uv/LO9NNJcd+fvHn5WjG/90Wbi+4w0kYb/C4yXFgPLOjuWMDIKtwTff7n+cFb2h6fr/8uU5+MdkocGuD6424xq9rbYutMBPKAUG5FowgmOh0ji+VV10851dmueG/yKSqRv9cs5foae0e/xPJNSmsFFjjLQFB+i89/n35b9fUP+7pJHnQWPz1x7/TA8gezcRVWvpqsNPS9APvfxLGv/39z/GauU8+s5a/KwCLzHzn87amJ+6Dnlsef57vLh8QjK8/FrW2viS81sIRBMX/5AQEhd9cLpVXXTxnVmad9J/kxKvZ7kP8L/z4QkPxJoE13hAQDP8uRyv0F0KjPy4LAoIll2Tx+rkDWPQ1TnGv+dsL7nMSJlu70d168WfNDL0oHhsAJdP9vZs0PVOvuINsTY2GgixsbcvNPdNycxDM1YKAIDsHQa7X+a/skom/YB/0fN5W9J3/4HxO/dPNtyP//uOvEP766694CgPtxJXGf2uY8IaAoDBzX/Lt+WDxihEE8dbzzcDoEi5+/+qAYPTXdFmG8V4noTjsIPchCjuaOjYACiYDgts0PQKCBxs3kMMKXdHaztyVQFF5BEG5FgQES24xKAcEU3/BPuj5vLFLQpDcH5DWxeQlenJD2l9//PFn/8KflutlTzglNxxBkDcI1icvg0oZfqEZeKcRBFP/Bb7/SShtcH7cw2hH/tADXGNyDgIjCPZgtme6prVdsJysYjVM1IKA4G0BgREE7+6cC/wx6E8s/6cbxQfnoOGvv9TN2wTWuMEcBOm//Zk/8zOXQWlkPBMQTN3Nk5vjY+rrgEE+UPoP8A4nIZft/jl8OMqy+Q0WHhsAqdFTDI5/XEcdlCubHgHBo5UDgmta2yXLyShWw0QtCAjeGBDMz0Hw0c7nzcXDA8Y9htKMJvEl+mULUXCjat4ksMZtn2IQSiNnoncNYrGxwsC//J+twkSsuSMbzRSVO7ry9AP3PAnDDY7uWDgFiYVbCcbzKRTOEQAloz+fo2+CMn9W55qeQiQw2zJyW+WA4IrWdrIVZsJENRRrQUCQnYOgdEJWXTx/0PN5e5fzm7kiH9/uUayJYZqgZt5g/N8ME5YHBLsxP8Bf0w4AALAD9+pZ74SAYPwr+QAAAMAe3KljvRcCAgAAAPbpbl3rffiAAQEAAAAfwj171zsgIAAAAGCf7tm73gEBAQAAAPt0z971DkwFBL/+z6+KoiiK8hGKVm/3RRVvoagF521nRdVsvwgI1hIQKIqiKIqLvP0XVbyFohact50VVbP9IiBYS0CgKIqiKC7y9l9U8RaKWnDedlZUzfaLgGAtAYGiKIqiuMjbf1HFWyhqwXnbWVE12y8CgrUEBIqiKIriIm//RRVvoagF521nRdVsvwgI1rpXQND98qn69Ev3+H8iiqIoijIuLvJ2X1TxFopacN52Vu5UNV33qfrfX7roh0d/8CcqAoK1FgQE+vaKoijK3kt8kdf8+qnqff6lefSxKTcpqngLJe1NNb98VgvO23OXqMfUfapeqkv57y9LtrC2wy8guKqO7tm73gEBgaIoiqIk199fvnw+X9g1v3yuqi9fHn54ytuLKt5CSWuhP/NqwXl71pIGBJeue/Pr/1ZLevICgrvU0T171zvwloCglF9Gy6uqOr6338jxh18va3z+z8f/u1EURVE+eCkNE21+/eQ7un0UVbyFEtXCl8/xReB/fq6qz4u+cf2QxXnbbCkFBL8eM4LPXf+35cuX8eCC//jlczTo4HPXnJKFfuF5g24xeFsd3bN3vQNXBwRJZhllmcnPw1zg9EO0gr9riqIoygZKoffoC7r9FFW8hVK8vDRe1Xl7zjIREMRLvnx5qb7813F5EhxMdvibX//3lCYICN5WR/fsXe/AtQFB6c/T7HJ/1xRFUZTtlVHv8TwaznfLeymqeAtFR9d521lZFBAMf/Vfn/tBBNMd/q77JCC4RR3ds3e9A28JCOJv/r98vvT/o+UCAkVRFOUZivHnuy+qeAtFR9d521lZHBDE8xfm7h24bDO970BAcIs6umfvegeMIFAURVGU8qOq3Aq3l6KKt1DcS++87awsmoOgHwgwLpnBBS+ffv2P6LcCghvU0T171ztw8zkIml8+V59+bc7/YXzKT1IoIFAURVG2VJLr7+j75C9fDEHfSVHFWyhm43fedlYWPsUgnoPg1//5j18+93nBf32uXi6JT2YjAoIb1NE9e9c7sDAgGDhGlaWnGHzpF3/68tkIAkVRFGX7ZXj9XWUbOOWJiyreQknHcZSuJBXn7WlKGhCMbg2ISvQUgzgsiB5bcBxu8J//3a/26ct/G0Fwkzq6Z+96BxYEBG8pw6kKFEVRFGWL5TatnrLhooq3UNSC87azomq2XwQEa90+IGh+/dSPk0keeagoiqIoWy0u8nZfVPEWilpw3nZW+qqphtMQvm95+Ad/oiIgWOtdAgLD9hRFUZTnKq6/d19U8RaKWnDedlZUzfaLgGCtd77FQFEURVGeoWj1dl9U8RaKWnDedlZUzfaLgGAtAYGiKIqiuMjbf1HFWyhqwXnbWVE12y8CgrWmAgIAAAB4XvfsXe/AVEBwz+MAgAfS6gHA/mjf1xIQAIBWDwB2SPu+loAAALR6ALBD2ve1BAQAoNUDgB3Svq8lIAAArR4A7JD2fa29BwRdUx013aMPJefQ1lXdHnI/zL4FgNvZSasHAES072s9IiB4Yxd3xdu7ZqvJwJCAAOChXEAAwP5o39fadUBwaOsnyQcEBACP5QICAPZH+77W/QOCQ1tXF+eubn8rQPKVf7T0vGb+7Tnpm7u0Xz3okLfZ3ac7m+2Vj4/20NZV3TR1v6zfYPRpCrcYDA/sfFxTBxwdb3K0ueWTHzxfHQD75QICnt7hR119b9vXqnqpqpeqeu2vYQ7t9/PCl6r6frlI6l4vy+sfh4mFwHPSvq+1iREE8Z0Al18mqx3aerzGmh0dJgKCqBccHUrXJN3srpnsKmeP9tDW/Ta6pkp+7leYCAhKpyV7wIe2viyPPkdh+fQHX3+yAZ6aCwh4eocfdfVSNT9Pr9rv2e79of1+yg6OgcJpjX/aurwQeFra97U2EBAM+6BdM+g8T7994Y6mAoIFy9d+qOkDmB04sPzA3nt5Xx0Au+YCAp5e0rcfvUxWG2cBc+8CnpP2fa2NBAQDmdsJLm+4X0CwrmOcOdobBgSha9YdcLx+aXl5SEWuOgB2zAUEPL1h3/5nk4wFeInuMng9D7O83HpQt/+E8kLgSWnf19pIQDDXFZ/o6l/3rpuPIMju91lHEBgyAHw4LiDg6RVHEPxs4q5+P4Jg4r0TC4Gnon1f6xEBwejpg+nr8w38XVMYNbD44YXld10mBCjf77BuDoLs0d4sIIjmESge8BVzEJQ/+Lg6AHbNBQQ8veH0Aef5CNJ+/mUOgu41TQ2+t4fCQuBpad/XekhAEA1jP3dR4ycAxJPlZSfTH7+9vJuki3/ZWjv3Rfr4CGbGE+SO9q0BQe7zTx1w9J7kaHPLl39w+QDwAbiAgKd3nKSwL+fZCkNIHkxQN6/nEQQ/m2j98/VOdiHwrLTvaz0mIGCe5wcA3JFWD56eL/yBEe37Ws8eECRfdb//t9533J2AAOCOnqTVA4qqePjATcujPxlwPe37Ws8eEOyXgADgjrR68PSMIABGtO9rCQgAQKsHADukfV9LQAAAWj0A2CHt+1pTAQEAAAA8r3v2rnfACAIA0OoBwA5p39cSEACAVg8Adkj7vpaAAAC0egCwQ9r3tQQEAKDVA4Ad0r6vJSAAAK0eAOyQ9n2tvQcEXVMdNd377ujQ1lXdHt53J3fdEcBHspNWDwCIaN/XekRA8MYu7oq3d837JwMnAgKAZ0jQ8TwAAAo/SURBVOYCAgD2R/u+1q4DgkNb3ysfEBAAPDUXEACwP9r3te4fEBzauro4d3X7WwGSr/yjpec182/PSd/cpf3qvpt9/KHN7j7d2XSvPOm3R+9LlpV2lH6o/IGdV1+4nUX7LZx2gI/HBQQ8vcOPuvretq9V9VJVL1X12l/bHNrv54UvVfX9cknXvV6W1z8OEwuB56R9X2sTIwjiOwEuvxx2ucdrrNnRYSIgiHrH0aF0TRIKdM1kFzo97n6Dl+1N76hfXjiwweZz23nTfo1LAD44FxDw9A4/6uqlan6eXrXfs937Q/v9lB0cA4XTGv+0dXkh8LS072ttICAY9k275thtLfVZbx8QLFi+fF9v3NGjlvenHeBDcgEBTy/p249eJquNs4C5dwHPSfu+1kYCgoHM7QSXN9wvIFjTYS6+sWtW7WiqA7/qgJesnz/tAB+QCwh4esO+/c8mGQvwEt1lcBoXEN96ULf/hPJC4Elp39faSEAw1xWf6Opf9y4jCO45gyPA5rmAgKdXHEHws4m7+v0Igon3TiwEnor2fa1HBASjpw+mr8/TDXRNYdTA4ocXlt/VNelcgLn7Hd5hDoLsjsbTG44PLNrm5HbW7Ldw2gE+JBcQ8PSG0wec5yNI+/mXOQi61zQ1+N4eCguBp6V9X+shAUE0vD3zFINkEr2ZhwuseLJAOmV/O/cF+/gIbvIUg/yOLvupmyZ/C8B4FsMb7Ld8igE+GBcQ8PSOkxT25TxbYQjJgwnq5vU8guBnE61/vg7KLgSelfZ9rccEBBT1I/89VwDgjrR68PR84Q+MaN/XevaAIPkK/P2/DX+X3cWD+4u3BgDwnp6k1QOKqnj4wE3Loz8ZcD3t+1rPHhDsQXIzQenWAADek1YPnp4RBMCI9n0tAQEAaPUAYIe072sJCABAqwcAO6R9X2sqIAAAAIDndc/e9Q4YQQAAWj0A2CHt+1oCAgDQ6gHADmnf1xIQAIBWDwB2SPu+loAAALR6ALBD2ve1BAQAoNUDgB3Svq+194Cga6qjpnv0oaQObV3V7SH6YXZNAN7NTlo9ACCifV/rEQHBG3u8K97eNdtLBk4EBABb4gICAPZH+77WrgOCQ1tvNR8QEABsigsIANgf7fta9w8IDm1dXZx7vv2tAMlX/tHS85r5t+ekb+7Sbvagf95md5/ubLqTXtrOYXK/4x8uWzgfyNQRRgfY72TyE+XPM8CH5wICnt7hR119b9vXqnqpqpeqeu0vdQ7t9/PCl6r6frkw614vy+sfh4mFwHPSvq+1iREE8Z0Al18mqx3aerzGmh1NddSjznJ0KF2ThAJdM9mjLm1nXUBQOg/ZIzy09WX5YHHxE60/iwAfgQsIeHqHH3X1UjU/T6/a79nu/aH9fsoOjoHCaY1/2rq8EHha2ve1NhAQDLuqXZPtWpfevnBHsx316eVXf6i1IwiuPsLVn+h8ngFwAQE7kPTtRy+T1cZZwNy7gOekfV9rIwHBQOZ2gssb7hcQrOk/3zwgCF2z7giXrJ8/zwC4gICnN+zb/2ySsQAv0V0Gr+c7QS+3HtTtP6G8EHhS2ve1NhIQzHXFJ7r6173rg44gMGQAIM8FBDy94giCn03c1e9HEEy8d2Ih8FS072s9IiAYPX0wfX2ebqBrCqMGFj+8sPyurjl/f16+32H9HATZ7cztN9+xj+YXKG55Yg6C8ican2cAXEDADgynDzjPR5D28y9zEHSvaWrwvT0UFgJPS/u+1kMCgmi0e+YpBsmcejMPF1jyZIGoi3/ZWjv3ffv4CFbtK345vd/SLQD9B546wvJTDJZ8IvkAwJkLCHh6x0kK+3KerTCE5MEEdfN6HkHws4nWP18WZRcCz0r7vtZjAgIyPFcA4HG0evD0fOEPjGjf13r2gCD5Rvz9vxx/z90JCAAe50laPaCoiocP3LQ8+pMB19O+r/XsAcGOCAgAHkerB0/PCAJgRPu+loAAALR6ALBD2ve1BAQAoNUDgB3Svq81FRAAAADA87pn73oHjCAAAK3e/qniLVAL13HeNkvVbJ86WktAAABavf1TxVugFq7jvG2Wqtk+dbSWgAAAtHr7p4q3QC1cx3nbLFWzfepoLQEBAGj19k8Vb4FauI7ztlmqZvvU0VoCAgDQ6u2fKt4CtXAd522zVM32qaO1NhAQHNq6qqqqbg932iEADLiA2D1VvAVq4TrO22apmu1TR2vNBgRdU+U13dR2T2+bXulIQADAoyUXEIOmTwO1C6p4C5JaOF0BqoZ5zttm6Xxunzpaa/kIghVd/nVrCwgAeLSo1Tu09aX9OjVn2qjnp4q3YFgL/Yk/VoNaKHDeNkvnc/vU0VpvDAjSDPP852k46qBuD6O087IlAQEAj5ZcfzeXFuncei2Mx9kuVbwFl1oYXP65GpzkvG2Wzuf2qaO13hIQJH+TBn+gpkcQTL0TAO6ucAGh87gfqngLLrUwGLmhHiY5b5ul87l96mitNwQEwzF5yQrZgGA0n0HTBQEBAI9XavW0T7uhireg2NFdeSvrR+O8bZbO5/apo7WuDwhGkWXyF6sUJ2TyAwEBAI9WuoDw/dxuqOIt8E34dZy3zdL53D51tNa9RhAMXgsIANiS+BbfJm6QTGG3F6p4C0b30p8vDV0NTnLeNkvnc/vU0Vr3moMg/XXyx82fNgAebXD9PQy/tVHPTxVvQWk2fheD05y3zdL53D51tNa7PMUgXr9fHq9a1wICADYkbvVyz+Lh6aniLUguL4dPuFINRc7bZul8bp86Wmt5QAAAu6XV2z1VvAVq4TrO22apmu1TR2sJCABAq7d/qngL1MJ1nLfNUjXbp47WEhAAgFZv/1TxFqiF6zhvm6Vqtk8drSUgAACt3v6p4i1QC9dx3jZL1WyfOlpLQAAAWr39U8VboBau47xtlqrZPnW01lRAAAAAAM/rnr3rHSgGBAAAAMDHISAAAAAABAQAAACAgAAAAAAIAgIAAAAgCAgAAACAICAAAAAAgoAAAAAACAICAAAAIAgIAAAAgCAgAAAAAIKAAAAAAAgCAgAAACAICAAAAIAgIAAAAACCgAAAAAAIAgIAAAAgCAgAAACAICAAAAAAgoAAAAAACAICAAAAIAgIAAAAgCAgAAAAAIKAAAAAAAgCAgAAACAICAAAAIAgIAAAAACCgAAAAAAIAgIAAAAgCAgAAACAICAAAAAAgoAAAAAACAICAAAAIAgIAAAAgCAgAAAAAIKAAAAAAAgCAgAAACAICAAAAIAgIAAAAACCgAAAAAAIAgIAAAAgCAgAAACAICAAAAAAgoAAAAAACAICAAAAIAgIAAAAgCAgAAAAAIKAAAAAAAgCAgAAACAICAAAAIAgIAAAAACCgAAAAAAIAgIAAAAgCAgAAACAICAAAAAAgoAAAAAACAICAAAAIAgIAAAAgCAgAAAAAIKAAAAAAAgCAgAAACAICAAAAIAgIAAAAACCgAAAAAAIAgIAAAAgCAgAAACAICAAAAAAQgj/HyMLlsmT9aDLAAAAAElFTkSuQmCC" alt="charu" />
appium_python 怎样实现参数化自动生成用例的更多相关文章
- tep集成mitmproxy录制流量自动生成用例
使用 操作过程非常简单,流程如下: ①配置过滤域名 必须配置,不然会有很多无效流量造成数据冗余. ②启动代理 「示例」使用了反向代理,tep自带FastApi启动Mock服务: 「实际」使用正向代理, ...
- 用 Python 为接口测试自动生成用例
用Python为接口自动生成测试用例 基于属性的测试会产生大量的.随机的参数,特别适合为单元测试和接口测试生成测试用例 尽管早在2006年haskell语言就有了QuickCheck来进行" ...
- unittest框架扩展(自动生成用例)自动化-上
一.思想: 基于数据驱动和代码驱动结合的自动化测试框架. 二.自动化测试框架步骤: 1.获取用例,用例格式:.ymal 2.调用接口 3.校验结果 4.发送测试报告 5.异常处理 6.日志模块 三.基 ...
- C++进阶--不让编译器自动生成类函数
//############################################################################ /* * 不让编译器自动生成类函数 * * ...
- 文件参数化-utp框架之根据yaml文件自动生成python文件+utp运行用例
根据yaml文件自动生成python文件 utp框架: bin目录:存放执行文件(run.py) cases目录:存放生成的用例的python文件(该目录下的文件为根据data目录下的测试用例生成的p ...
- SQL参数化查询自动生成SqlParameter列表
string sql = @"INSERT INTO stu VALUES (@id,@name) "; 参数化查询是经常用到的,它可以有效防止SQL注入.但是需要手动去匹配参数@ ...
- 利用python自动生成verilog模块例化模板
一.前言 初入职场,一直忙着熟悉工作,就没什么时间更新博客.今天受“利奇马”的影响,只好宅在家中,写写技术文章.芯片设计规模日益庞大,编写脚本成了芯片开发人员必要的软技能.模块端口动不动就几十上百个, ...
- 懒人小工具:自动生成Model,Insert,Select,Delete以及导出Excel的方法
在开发的过程中,我们为了节约时间,往往会将大量重复机械的代码封装,考虑代码的复用性,这样我们可以节约很多时间来做别的事情.最近跳槽到一节webform开发的公司,主要是开发自己公司用的ERP.开始因为 ...
- 懒人小工具1:winform自动生成Model,Insert,Select,Delete以及导出Excel的方法
懒人小工具2:T4自动生成Model,Insert,Select,Delete以及导出Excel的方法 github地址:https://github.com/Jimmey-Jiang/J ...
随机推荐
- 关于CDN
DNS域名解析过程 DNS即Domain Name System,是域名解析服务的意思.它在互联网的作用是:把域名转换成为网络可以识别的ip地址.人们习惯记忆域名,但机器间互相只认IP地址,域名与IP ...
- DataX-MySQL(读写)
DataX操作MySQL 一. 从MySQL读取 介绍 MysqlReader插件实现了从Mysql读取数据.在底层实现上,MysqlReader通过JDBC连接远程Mysql数据库,并执行相应的sq ...
- QT QStringListModel 示例代码
1. QStringListModel , 实现 插入 删除 编辑 list,支持鼠标双击编辑. 2. dialog.h #ifndef DIALOG_H #define DIALOG_H #inc ...
- ZigzagConvert
public class ZigzagConvert { public static String convert(String s, int nRows) { int len = s.length( ...
- list!=null跟list.isEmpty()有什么区别?
这就相当与,你要喝水,前面list!=null就是判断是不是连水杯都没有,后面!list.isEmpty就是判断水杯里面没有水,连盛水的东西都没有,这个水从何而来?所以一般的判断是if(list!=n ...
- 保护SSH的三把锁
///////////////////////////////写在前面//////////////////////////////////////原帖地址:http://www.ibm.com/dev ...
- ROS配置C++14环境
ROS配置C++11环境 打开Terminal, sudo vim /opt/ros/<yourversion>/share/catkin/cmake/toplevel.cmake 比如: ...
- R中的基本函数运算
一.均值 1.均值:mean(X)#计算所有元素的均值,包括矩阵.向量 2.行均值:apply(x,1,mean) 3.行均值:apply(x,2,mean) 注:如果x是数据框,则返回的就是向量 e ...
- uva 10453 dp/LCS变形
https://vjudge.net/problem/UVA-10453 给出一个字符串,问最少添加几个字符使其变为回文串,并输出任意一种答案.就是一个类似于LCS的题目,而且简化了一下,只会出现三种 ...
- The CHECK_POLICY and CHECK_EXPIRATION options cannot be turned OFF when MUST_CHANGE is ON. (Microsoft SQL Server,错误: 15128)
记录下 The CHECK_POLICY and CHECK_EXPIRATION options cannot be turned OFF when MUST_CHANGE is ON. (Micr ...