SP913 QTREE2 - Query on a tree II

给定一棵n个点的树,边具有边权。要求作以下操作:

DIST a b 询问点a至点b路径上的边权之和

KTH a b k 询问点a至点b有向路径上的第k个点的编号

有多组测试数据,每组数据以DONE结尾。

裸的LCA。

在处理第二个操作时,我直接向上数跳了多少个。

顾z大佬说不能这么做,要求出跳到那个点的深度再去跳。

真的是这样,不过懒得想了,应该是+1-1的误差。 balabala。。。

code:

#include <iostream>
#include <cstdio>
#include <cstring> using namespace std; const int wx=50017; int dep[wx],dis[wx];
int f[wx][23];
int head[wx];
int num,n,t;
char opt[7]; inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
} struct e{
int nxt,to,dis;
}edge[wx*2]; void add(int from,int to,int dis){
edge[++num].nxt=head[from];
edge[num].to=to;
edge[num].dis=dis;
head[from]=num;
} void dfs(int u,int fa){
dep[u]=dep[fa]+1;
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(v==fa)continue;
f[v][0]=u;dis[v]=dis[u]+edge[i].dis;
dfs(v,u);
}
} void pre(){
for(int j=1;j<=21;j++)for(int i=1;i<=n;i++)f[i][j]=f[f[i][j-1]][j-1];
} int LCA(int x,int y){
if(dep[x]<dep[y])swap(x,y);
for(int i=21;i>=0;i--){
if(dep[f[x][i]]>=dep[y]){
x=f[x][i];
}
}
if(x==y)return x;
for(int i=21;i>=0;i--){
if(f[x][i]!=f[y][i]){
x=f[x][i]; y=f[y][i];
}
}
return f[x][0];
} int find(int x,int k){
for(int i=21;i>=0;i--){
if(dep[f[x][i]]>=k)x=f[x][i];
}
return x;
} int main(){
t=read();
while(t--){
n=read();
memset(head,0,sizeof head); num=1;
memset(edge,0,sizeof edge);
for(int i=1;i<n;i++){
int x,y,z;
x=read(); y=read(); z=read();
add(x,y,z); add(y,x,z);
}
dfs(1,0); pre();
while(1){
scanf("%s",opt+1);
if(opt[2]=='O')break;
if(opt[2]=='I'){
int x,y;
x=read(); y=read();
int lca=LCA(x,y);
printf("%d\n",dis[x]+dis[y]-2*dis[lca]);
}
if(opt[1]=='K'){
int a,b,k;
a=read(); b=read(); k=read();
int lca=LCA(a,b);
if(dep[a]-dep[lca]+1>=k)printf("%d\n",find(a,dep[a]-k+1));
else printf("%d\n",find(b,k-dep[a]+2*dep[lca]-1));
}
}
}
}

LCA SP913 QTREE2 - Query on a tree II的更多相关文章

  1. SP913 QTREE2 - Query on a tree II

    思路 第一个可以倍增,第二个讨论在a到lca的路径上还是lca到b的路径上, 倍增即可 代码 #include <cstdio> #include <algorithm> #i ...

  2. 【SPOJ QTREE2】QTREE2 - Query on a tree II(LCA)

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

  3. [SPOJ913]QTREE2 - Query on a tree II【倍增LCA】

    题目描述 [传送门] 题目大意 给一棵树,有两种操作: 求(u,v)路径的距离. 求以u为起点,v为终点的第k的节点. 分析 比较简单的倍增LCA模板题. 首先对于第一问,我们只需要预处理出根节点到各 ...

  4. SPOJ QTREE2 Query on a tree II

    传送门 倍增水题…… 本来还想用LCT做的……然后发现根本不需要 //minamoto #include<bits/stdc++.h> using namespace std; #defi ...

  5. spoj 913 Query on a tree II (倍增lca)

    Query on a tree II You are given a tree (an undirected acyclic connected graph) with N nodes, and ed ...

  6. LCA【SP913】Qtree - Query on a tree II

    Description 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点b有向路径上的第k个点的编号 有多组测试数据 ...

  7. QTREE2 spoj 913. Query on a tree II 经典的倍增思想

    QTREE2 经典的倍增思想 题目: 给出一棵树,求: 1.两点之间距离. 2.从节点x到节点y最短路径上第k个节点的编号. 分析: 第一问的话,随便以一个节点为根,求得其他节点到根的距离,然后对于每 ...

  8. Query on a tree II 倍增LCA

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

  9. SPOJ Query on a tree II (树剖||倍增LCA)(占位)

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

随机推荐

  1. MyBatis基于注解----增删改查

    select sysdate from dual; --账户表 --账户编号,账户卡号,账户密码,账户余额,账户状态,创建时间 drop table account; create table acc ...

  2. showModalDialog()子窗口刷新父窗口

    今天再次使用showModalDialog(),发现了两个问题,一是子窗口如何刷新父窗口,二是窗口的参数问题. 1 子窗口刷新父窗口 如果是window.open();问题就好办,直接用window. ...

  3. 2015.3.7 Dll CString不能作为传入参数而要用char*

    extern "C" __declspec(dllexport) void CalcArc_2(Point2D& pm, double am, double an, CSt ...

  4. NBU客户端备份失败,报错error 48 client hostname could not be found

    今天在做备份时发现了这个报错.经过ping, nslookup, bpclntcmd命令检查没有发现连接或域名解析存在问题. 参考文档http://www.symantec.com/docs/TECH ...

  5. Spring-@value用法详解

    为了简化读取properties文件中的配置值,spring支持@value注解的方式来获取,这种方式大大简化了项目配置,提高业务中的灵活性. 一.两种使用方法 1.@Value("#{co ...

  6. java 多线程系列---JUC原子类(五)之AtomicLongFieldUpdater原子类

    AtomicLongFieldUpdater介绍和函数列表 AtomicLongFieldUpdater可以对指定"类的 'volatile long'类型的成员"进行原子更新.它 ...

  7. 问题:C#控制台程序参数;结果:设置与读取C#控制台应用程序Main函数中的参数args

    设置与读取C#控制台应用程序Main函数中的参数args 在项目属性面版->调试->命令行参数设置.空格分隔.读取:string[] str = Environment.GetComman ...

  8. leetcode398

    public class Solution { int[] nums; Random rnd; public Solution(int[] nums) { this.nums = nums; this ...

  9. WebRTC的拥塞控制技术<转>

    转载地址:http://www.jianshu.com/p/9061b6d0a901 1. 概述 对于共享网络资源的各类应用来说,拥塞控制技术的使用有利于提高带宽利用率,同时也使得终端用户在使用网络时 ...

  10. java,js判断全角半角

    function chkHalf(str){ for(var i=0;i { strCode=str.charCodeAt(i); if((strCode>65248)||(strCode==1 ...