洛谷P2518 [HAOI2010]计数
题目描述
你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数。比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等。
现在给定一个数,问在这个数之前有多少个数。(注意这个数不会有前导0).
输入输出格式
输入格式:
只有1行,为1个整数n.
输出格式:
只有整数,表示N之前出现的数的个数。
输入输出样例
说明
n的长度不超过50,答案不超过2^63-1.
题解
挺裸的数位dp(虽然我并不会)
懒得写了,直接贴一下->这里
- //minamoto
- #include<iostream>
- #include<cstdio>
- #define ll long long
- using namespace std;
- const int N=;
- int a[N],v[N],n;ll c[N][N],ans;
- ll gc(int n,int m){
- if(c[n][m]) return c[n][m];
- if(m==) return n;
- if(m==||m==n) return ;
- if(m>n) return ;
- c[n][m]=gc(n-,m)+gc(n-,m-);
- return c[n][m];
- }
- ll calc(){
- ll res=;
- int m=n;
- for(int i=;i<;++i) if(a[i]) res*=gc(m,a[i]),m-=a[i];
- return res;
- }
- int main(){
- //freopen("testdata.in","r",stdin);
- char ch;
- while(cin>>ch)if(isdigit(ch))v[++n]=ch-,a[v[n]]++;
- int nn=n;
- for(int i=;i<=nn;++i){
- --n;
- for(int j=;j<v[i];++j)
- if(a[j]){--a[j],ans+=calc(),++a[j];}
- --a[v[i]];
- }
- printf("%lld\n",ans);
- return ;
- }
洛谷P2518 [HAOI2010]计数的更多相关文章
- 洛谷 P2518 [HAOI2010]计数 (组合数)
题面 luogu 题解 本来想练数位dp的,结果又忍不住写了组合数.. 去掉一个\(0\)可以看作把\(0\)移到前面去 那么题目转化为 \(n\)有多少个排列小于\(n\) 强制某一位比\(n\)的 ...
- 洛谷P1144-最短路计数-最短路变形
洛谷P1144-最短路计数 题目描述: 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 思路: \(Dijkstra ...
- 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)
洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...
- 洛谷$P$2518 计数 $[HAOI2010]$ 数位$dp$
正解:数位$dp$ 解题报告: 传送门$w$ 感觉省选的数位$dp$还是比较有质量的辣,,,至少有一定的思维难度是趴$QwQ$ 这题要考虑到一个,我认为比较关键的点,就,对于一个位数不满的数,可以理解 ...
- 洛谷 P2515 [HAOI2010]软件安装 解题报告
P2515 [HAOI2010]软件安装 题目描述 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到 ...
- 洛谷——P3914 染色计数
P3914 染色计数 题目描述 有一颗NN个节点的树,节点用1,2,\cdots,N1,2,⋯,N编号.你要给它染色,使得相邻节点的颜色不同.有MM种颜色,用1,2,\cdots,M1,2,⋯,M编号 ...
- 洛谷——P1176 路径计数2
P1176 路径计数2 题目描述 一个N \times NN×N的网格,你一开始在(1,1)(1,1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N)(N,N),即右下角有 ...
- 洛谷 P3914 染色计数
P3914 染色计数 题目描述 有一颗NN个节点的树,节点用1,2,\cdots,N1,2,⋯,N编号.你要给它染色,使得相邻节点的颜色不同.有MM种颜色,用1,2,\cdots,M1,2,⋯,M编号 ...
- 洛谷 P1176 路径计数2
P1176 路径计数2 题目描述 一个N×N的网格,你一开始在(1, 1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N, N),即右下角有多少种方法. 但是这个问题太简单了, ...
随机推荐
- type命令
用途说明 type命令用来显示指定命令的类型.一个命令的类型可以是如下几种: alias 别名 keyword 关键字,Shell保留字 function 函数,Shell函数 builtin 内建命 ...
- dijstra+输出路径总结
#include<iostream> #include<math.h> #include<memory.h> using namespace std; #defin ...
- Xcode的Refactor使用
最近在看<重构>的书,想到Xcode有一个Refactor的功能,不知道您用的多不多,用这个功能在我们开发过程中,可以提高开发效率. Refactor 右键显示 Refactor 一.Re ...
- 图解缓存淘汰算法三之FIFO
1.概念分析 FIFO(First In First Out),即先进先出.最先进入的数据,最先出来.一个很简单的算法.只要使用队列数据结构即可实现.那么FIFO淘汰算法基于的思想是"最近刚 ...
- 第八章 JVM内存管理(待续)
物理内存与虚拟内存 内核空间与用户空间 在Java中哪些组件需要使用内存 JVM内存结构 JVM内存分配策略 JVM内存回收策略 内存问题分析
- centos7的xfs配置
XFS是扩展性高.高性能的文件系统.也是rhel7/centos7的默认文件系统.XFS支持metadata journaling,这使其能从crash中更快速的恢复.它也支持在挂载和活动的状态下进行 ...
- eclipse 中使用 GreenUML 和 AmasterasUML 自动生成类图
Green UML和AmaterasUML 两种 一.安装方法: 1.都是先安装GEF 通过eclipse-> install new software安装GEF的网址: http://down ...
- JAVA基础知识总结11(异常)
异常: 就是不正常.程序在运行时出现的不正常情况.其实就是程序中出现的问题.这个问题按照面向对象思想进行描述,并封装成了对象.因为问题的产生有产生的原因.有问题的名称.有问题的描述等多个属性信息存在. ...
- Express响应方法
下表中响应对象(res)的方法向客户端返回响应,终结请求响应的循环.如果在路由句柄中一个方法也不调用,来自客户端的请求会一直挂起. 方法 描述 res.download() 提示下载文件. res.e ...
- C++字符串流保存数据
文件流是以外存文件为输入输出对象的数据流.字符串流是以内存中用户定义的字符数组(字符串)为输入输出对象的. 建立输出字符串流: ostrstream strout(c,sizeof(c));第一个参数 ...