Balanced Numbers

Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

1)      Every even digit appears an odd number of times in its decimal representation

2)      Every odd digit appears an even number of times in its decimal representation

For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

Input

The first line contains an integer T representing the number of test cases.

A test case consists of two numbers A and B separated by a single space representing the interval. You may assume that 1 <= A <= B <= 1019

Output

For each test case, you need to write a number in a single line: the amount of balanced numbers in the corresponding interval

Example

Input:
2
1 1000
1 9
Output:
147
4 题意:奇数个数为偶数,偶数个数为奇数。 用三进制来表示0-9的状态,0为没有,1为奇数个,2为偶数个。
3^10约为60000。
注意判断前导零。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll; ll a[],p[],st[][];
ll dp[][]; ll dfs(int pos,int sta,bool lead,bool limit){ if(pos==-){
for(int i=;i<=;i+=){
if(st[sta][i]==) return ;
}
for(int i=;i<=;i+=){
if(st[sta][i]==) return ;
}
return ;
}
if(!lead&&!limit&&dp[pos][sta]>-) return dp[pos][sta];
int up=limit?a[pos]:;
ll cnt=;
for(int i=;i<=up;i++){
if(i==&&lead){
cnt+=dfs(pos-,sta,lead&&i==,limit&&i==a[pos]);
}
else if(st[sta][i]==){
cnt+=dfs(pos-,sta-p[i],lead&&i==,limit&&i==a[pos]);
}
else{
cnt+=dfs(pos-,sta+p[i],lead&&i==,limit&&i==a[pos]);
}
}
if(!lead&&!limit) dp[pos][sta]=cnt;
return cnt;
}
ll solve(ll x){
int pos=;
while(x){
a[pos++]=x%;
x/=;
}
return dfs(pos-,,true,true);
}
int main()
{
int t;
ll l,r;
scanf("%d",&t);
memset(dp,-,sizeof(dp));
p[]=;
for(int i=;i<=;i++){
p[i]=p[i-]*;
}
for(int i=;i<p[];i++){
int ii=i,c=-;
while(ii){
c++;
st[i][c]=ii%;
ii/=;
}
}
while(t--){
scanf("%lld%lld",&l,&r);
printf("%lld\n",(solve(r)-solve(l-)));
}
return ;
}

SPOJ - BALNUM Balanced Numbers(数位dp+三进制状压)的更多相关文章

  1. SPOJ BALNUM - Balanced Numbers - [数位DP][状态压缩]

    题目链接:http://www.spoj.com/problems/BALNUM/en/ Time limit: 0.123s Source limit: 50000B Memory limit: 1 ...

  2. spoj 10606 Balanced Numbers 数位dp

    题目链接 一个数称为平衡数, 满足他各个数位里面的数, 奇数出现偶数次, 偶数出现奇数次, 求一个范围内的平衡数个数. 用三进制压缩, 一个数没有出现用0表示, 出现奇数次用1表示, 出现偶数次用2表 ...

  3. SPOJ10606 BALNUM - Balanced Numbers(数位DP+状压)

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a ...

  4. spoj Balanced Numbers(数位dp)

    一个数字是Balanced Numbers,当且仅当组成这个数字的数,奇数出现偶数次,偶数出现奇数次 一下子就相到了三进制状压,数组开小了,一直wa,都不报re, 使用记忆化搜索,dp[i][s] 表 ...

  5. ZRDay6A. 萌新拆塔(三进制状压dp)

    题意 Sol 这好像是我第一次接触三进制状压 首先,每次打完怪之后吃宝石不一定是最优的,因为有模仿怪的存在,可能你吃完宝石和他打就GG了.. 因此我们需要维护的状态有三个 0:没打 1:打了怪物 没吃 ...

  6. HDU 3001 三进制状压DP

    N个城市,M条道路,每条道路有其经过的代价,每一个城市最多能够到达两次,求走全然部城市最小代价,起点随意. 三进制状压.存储每一个状态下每一个城市经过的次数. 转移方程: dp[i+b[k]][k]= ...

  7. 三进制状压 HDOJ 3001 Travelling

    题目传送门 题意:从某个点出发,所有点都走过且最多走两次,问最小花费 分析:数据量这么小应该是状压题,旅行商TSP的变形.dp[st][i]表示状态st,在i点时的最小花费,用三进制状压.以后任意进制 ...

  8. Codeforces Round #297 (Div. 2) [ 折半 + 三进制状压 + map ]

    传送门 E. Anya and Cubes time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  9. hdu3001(三进制状压)

    题目大意: 现在给你一个有n个点和m条边的图,每一条边都有一个费用,每个点不能经过超过两次,求所有点至少遍历一次的最小费用 其中n<=10 m没有明确限制(肯定不会超过1e5) 一看到这个数据范 ...

随机推荐

  1. 图的m着色问题 (回溯搜索)

    图的m着色问题 [问题描述]        给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的 ...

  2. 系列文章----.Net程序员学用Oracle系列

    .Net程序员学用Oracle系列(18):PLSQL Developer 攻略 .Net程序员学用Oracle系列(17):数据库管理工具(SQL Plus) .Net程序员学用Oracle系列(1 ...

  3. 使用POI导出excel基础篇

    最近搞了下POI导出Excel,听说很多次,却是第一次搞. 在pom.xml中引入依赖 <dependency> <groupId>org.apache.poi</gro ...

  4. unix下网络编程之I/O复用(三)

    poll函数 在上文unix下网络编程之I/O复用(二)中已经介绍了select函数的相关使用,本文将介绍另一个常用的I/O复用函数poll.poll提供的功能与select类似,不过在处理流设备时, ...

  5. Windows命令查看文件的MD5/SHA1/SHA256

    certutil -hashfile "D:\Tools\Microsoft\SqlServer\2016\ct_sql_server_2016_enterprise_x64_dvd_869 ...

  6. c# Chart 服务器端动态创建ChartArea

    1 aspx <x:ContentPanel ShowBorder="true" ShowHeader="false" ID="ContentP ...

  7. 蓝桥杯 基础训练 BASIC-27 2n皇后问题

    基础练习 2n皇后问题   时间限制:1.0s   内存限制:512.0MB 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都 ...

  8. Java-API-POI-Excel:HSSFWorkbook Documentation

    ylbtech-Java-API-POI-Excel:HSSFWorkbook Documentation 1.返回顶部 1. org.apache.poi.hssf.usermodel Class ...

  9. AngularJS:SQL

    ylbtech-AngularJS:SQL 1.返回顶部 1. AngularJS SQL 在前面章节中的代码也可以用于读取数据库中的数据. 使用 PHP 从 MySQL 中获取数据 AngularJ ...

  10. maven中maven dependencies中依赖出现了项目

    maven 中maven dependencies中依赖出现了项目,把依赖的项目关掉,项目消失,但是还是无法打包 ,出现的错误如图.说明:依赖的项目为project-dao  打包的项目为projec ...