我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html

题目传送门:http://poj.org/problem?id=1958

题目要我们求四柱汉诺塔的步数最小值,将盘子数在\(1\)到\(12\)之间的全部求出来。

状态空间即为移动盘子对应的步数。

对于三柱汉诺塔,相信大家都非常熟悉了。我们假设三柱汉诺塔上有\(n\)个盘子,\(f[n]\)表示将\(n\)个盘子移动到另一根柱子上的最小步数,那么显然:

\(f[n]=f[n-1]*2+1\)

就相当于你先把上面\(n-1\)个盘子先移到第二跟柱子上,然后用一步把最后的大盘子移动到第三根柱子上。再把那\(n-1\)个盘子移到第三根柱子上。

那么在题目要求的四柱条件下,状态就可以用三柱条件下的状态扩展得来。设\(g[n]\)表示四柱条件下\(n\)个盘子从第一根全部移到另一根的最小步数。

那么显然:

\(g[n]=min\){\(\sum_{i=1}^{n-1}g[i]*2+g[n-i]\)}

就是枚举先将\(i\)个盘子移动到另一根柱子上,然后将剩下的盘子在三柱条件下移动到最后一根柱子上,再将先前的\(i\)根柱子移动到最后一根柱子上去。

时间复杂度:\(O(n^2)\)

空间复杂度:\(O(n)\)

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int n=12;
int f[13],g[13]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} int main() {
memset(g,63,sizeof(g));
g[1]=1;
for(int i=1;i<=n;i++)
f[i]=f[i-1]*2+1;
for(int i=2;i<=n;i++)
for(int j=1;j<i;j++)
g[i]=min(g[i],g[j]*2+f[i-j]);
for(int i=1;i<=n;i++)
printf("%d\n",g[i]);
return 0;
}

POJ1958:Strange Towers of Hanoi的更多相关文章

  1. POJ1958 Strange Towers of Hanoi [递推]

    题目传送门 Strange Towers of Hanoi Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3117   Ac ...

  2. POJ-1958 Strange Towers of Hanoi(线性动规)

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...

  3. POJ 1958 Strange Towers of Hanoi

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3784 Accepted: 23 ...

  4. POJ 1958 Strange Towers of Hanoi 解题报告

    Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...

  5. poj1958——Strange Towers of Hanoi

    The teacher points to the blackboard (Fig. 4) and says: "So here is the problem: There are thre ...

  6. poj1958 strange towers of hanoi

    说是递推,其实也算是个DP吧. 就是4塔的汉诺塔问题. 考虑三塔:先从a挪n-1个到b,把最大的挪到c,然后再把n-1个从b挪到c,所以是 f[i] = 2 * f[i-1] + 1; 那么4塔类似: ...

  7. Strange Towers of Hanoi

    题目链接:http://sfxb.openjudge.cn/dongtaiguihua/E/ 题目描述:4个柱子的汉诺塔,求盘子个数n从1到12时,从A移到D所需的最大次数.限制条件和三个柱子的汉诺塔 ...

  8. Gym-100451B:Double Towers of Hanoi

    题目链接 题目大意:把汉诺双塔按指定顺序排好的最少步数 我写这题写了很久...终于发现不dp不行 把一个双重塔从一根桩柱移动到另一根桩柱需要移动多少次? 最佳策略是移动一个双重 (n-1) 塔,接着移 ...

  9. Strange Towers of Hanoi POJ - 1958(递推)

    题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12) 那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到 ...

随机推荐

  1. 学习Sharding JDBC 从入门到出门-1

    感觉大神已经写好了,自己膜拜下下, 送上大神地址:http://www.cnblogs.com/zhongxinWang/p/4262650.html 这篇博客主要是理论的说明了什么是分库分表,路由等 ...

  2. Go 学习笔记

    官网: https://golang.org/ 环境: $GOROOT: GOROOT环境变量指定了Go的安装目录. $GOPATH: GOPATH 环境变量指定workspace的目录. 命令行: ...

  3. Android笔记之使用Glide加载网络图片、下载图片

    Glide简介 不想说太多,真的很方便:P)可以节省我不少时间 GitHub地址:https://github.com/bumptech/glide 加载网络图片到ImageView Glide.wi ...

  4. IDEA 配置Tomcat 跑Jeecg项目

    最近搞了个国人开发的开源项目,还不错,记录一下踩过得坑; 首先项目开源地址 下载就可以; 准备工作作者以介绍,不再详述; 1:我使用的IDEA作为开发工具- 首先导入pom.xml,下载依赖包(此过程 ...

  5. linux 中 用户管理 (composer 时不能root 遇到)

    linux 是支持多用户的,可以同时多个用户在线操作,这点与 Windows 不同. 在我们项目组 操作linux 服务器时,可进行多用户管理,并赋予不同权限,下面是我学习并用的比较频繁的命令: 1. ...

  6. Android系统字体规范

    我们在做Android移动APP设计的时候,字号的选择也是很让人头疼,转载一份有关Android系统字体规范,如果在做Android项目的用户应该看看,如果有任何建议欢迎在留言处与我们交流探讨. 主要 ...

  7. PHP eval函数使用介绍

    eval()函数中的eval是evaluate的简称,这个函数的作用就是把一段字符串当作PHP语句来执行. 复制代码代码如下: eval("echo'hello world';") ...

  8. Yii2之事件处理

    通过事件(Event)处理,可以在某个特定时刻执行指定的代码,可以解耦代码,同时也增加了可维护性,通常,事件在客户端软件中比较好理解,比如onClick,onFocus,当点击按钮,获取到焦点时执行指 ...

  9. 3.11课·········异常语句与for循环重复

    异常语句try catch finally try//保护执行里面的代码段,若其中一句有错误,直接跳转到catch,不会管下面的内容 { Console.Write("请输入一个整数&quo ...

  10. js完美实现table分页

    // JavaScript Document /** * js分页类 * @param iAbsolute 每页显示记录数 * @param sTableId 分页表格属性ID值,为String * ...