BestCoder Round #4 之 Miaomiao's Geometry(2014/8/10)
最后收到邮件说注意小数的问题!此代码并没有过所有数据,请读者参考算法,
自己再去修改一下吧!注意小数问题!
Miaomiao's Geometry
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 10 Accepted Submission(s): 3
There are 2 limits:
1.A point is convered if there is a segments T , the point is the left end or the right end of T.
2.The length of the intersection of any two segments equals zero.
For example , point 2 is convered by [2 , 4] and not convered by [1 , 3]. [1 , 2] and [2 , 3] are legal segments , [1 , 2] and [3 , 4] are legal segments , but [1 , 3] and [2 , 4] are not (the length of intersection doesn't equals zero), [1 , 3] and [3 , 4] are not(not the same length).
Miaomiao wants to maximum the length of segements , please tell her the maximum length of segments.
For your information , the point can't coincidently at the same position.
There is a number T ( T <= 50 ) on the first line which shows the number of test cases.
For each test cases , there is a number N ( 3 <= N <= 50 ) on the first line.
On the second line , there are N integers Ai (-1e9 <= Ai <= 1e9) shows the position of each point.
3
1 2 3
3
1 2 4
4
1 9 100 10
For the first sample , a legal answer is [1,2] [2,3] so the length is 1. For the second sample , a legal answer is [-1,1] [2,4] so the answer is 2. For the thired sample , a legal answer is [-7,1] , [1,9] , [10,18] , [100,108] so the answer is 8.
题目大意:
#include <stdio.h>
#include <string.h>
#include <algorithm> using namespace std; int main()
{
int t;
int n;
int i, j;
int a[60];
int b[60], e;
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
for(i=0; i<n; i++)
{
scanf("%d", &a[i] );
}
sort(a, a+n); e=0;
for(i=1; i<n; i++)
{
b[e++] = a[i] - a[i-1] ;
}
sort(b, b+n-1 ); int max=-1;
int flag; for(i=0; i<n-1; i++)
{
flag=1; //初始化每个间距标记
for(j=1; j<n-1; j++)
{
if(a[j]-b[i]<a[j-1] && a[j]+b[i]>a[j+1] )
{
flag=0;
break;
}
}
if(flag==1)
{
if(b[i] >max )
{
max = b[i] ;
}
}
}
printf("%d", max );
printf(".000\n");
}
return 0;
}
BestCoder Round #4 之 Miaomiao's Geometry(2014/8/10)的更多相关文章
- hdu4932 Miaomiao's Geometry (BestCoder Round #4 枚举)
题目链接:pid=4932" style="color:rgb(202,0,0); text-decoration:none">http://acm.hdu.edu ...
- BestCoder Round #89 02单调队列优化dp
1.BestCoder Round #89 2.总结:4个题,只能做A.B,全都靠hack上分.. 01 HDU 5944 水 1.题意:一个字符串,求有多少组字符y,r,x的下标能组成等比数列 ...
- BestCoder Round #90 //div all 大混战 一题滚粗 阶梯博弈,树状数组,高斯消元
BestCoder Round #90 本次至少暴露出三个知识点爆炸.... A. zz题 按题意copy Init函数 然后统计就ok B. 博弈 题 不懂 推了半天的SG..... 结果这 ...
- bestcoder Round #7 前三题题解
BestCoder Round #7 Start Time : 2014-08-31 19:00:00 End Time : 2014-08-31 21:00:00Contest Type : ...
- Bestcoder round #65 && hdu 5593 ZYB's Tree 树形dp
Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submissio ...
- Bestcoder round #65 && hdu 5592 ZYB's Premutation 线段树
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submissio ...
- 暴力+降复杂度 BestCoder Round #39 1002 Mutiple
题目传送门 /* 设一个b[]来保存每一个a[]的质因数的id,从后往前每一次更新质因数的id, 若没有,默认加0,nlogn复杂度: 我用暴力竟然水过去了:) */ #include <cst ...
- 贪心 BestCoder Round #39 1001 Delete
题目传送门 /* 贪心水题:找出出现次数>1的次数和res,如果要减去的比res小,那么总的不同的数字tot不会少: 否则再在tot里减去多余的即为答案 用set容器也可以做,思路一样 */ # ...
- BestCoder Round #88
传送门:BestCoder Round #88 分析: A题统计字符串中连续字串全为q的个数,预处理以下或加个cnt就好了: 代码: #include <cstdio> #include ...
随机推荐
- busybox下inittab中runlevel解析
Order of scripts run in /etc/rc?.d ================================== 0. Overview. All scripts execu ...
- ansible的异步执行
ansible任务的异步执行 96 茶客furu声 关注 2016.07.12 01:40* 字数 458 阅读 1777评论 0喜欢 4 ansible方便在于能批量下发,并返回结果和呈现.简单.高 ...
- 基于树莓派3B+Python3.5的OpenCV3.4的配置教程
https://www.cnblogs.com/Pyrokine/p/8921285.html
- 启用nginx报错80端口被占用
最近在本机跑nginx,启动后报错,怀疑80端口被占用 netstat -ano|findstr 尝试一:查看后发现端口被一个System pid 为4的一个程序占用.我在资源管理器中尝试将Syste ...
- 【一键激活win8.1系统】
下载激活工具地址: 链接:https://pan.baidu.com/s/1AUaQQRcqfCYWK94KapYjjA 密码:i4sk 下载后,右键单击“以管理员身份运行”Microsoft Too ...
- 开发app应用的开源项目推荐
app检测内存泄漏 请看这里:LeakCanary Android 和 Java 内存泄露检测 app应用想要控制状态栏 StatusBarUtil :https://github.com/laobi ...
- 计算CPU利用率
一般来说对于需要大量cpu计算的进程,当前端压力越大时,CPU利用率越高.但对于I/O网络密集型的进程,即使请求很多,服务器的CPU也不一定很到,这时的服务瓶颈一般是在磁盘的I/O上.比较常见的就是, ...
- 【问题解决】Tomcat 启动时闪退或提示“Neither the JAVA_HOME or the JRE_HOME environmental variable is defined.”
问题解决思路: 1.分析startup.bat启动脚本:发现其调用了catalina.bat,而catalina.bat调用了setclasspath.bat 2.在setclasspath.bat的 ...
- 【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元
[BZOJ3143][Hnoi2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 ...
- android菜鸟学习笔记21----ContentProvider(一)ContentProvider的简单使用
ContentProvider是Android四大组件之一,它用来封装数据,并通过ContentResolver接口将数据提供给其他应用.只有当需要在多个应用之间共享数据时才会用到ContentPro ...