#include<bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
struct node
{
    int v,z,d,next;//存可以连接的点,用next存邻接表
}a[10010];
struct road
{
    int u,cnt,dis;//dis储存当前需要的钱数,即最短路算法里的权,u储存顶点,cnt储存组合数即状态压缩dp
    road(int uu,int cntt,int diss)
    {
        u=uu;
        cnt=cntt;
        dis=diss;
    }
    bool operator < (const road &x)const
    {
        return dis>x.dis;//将费用小的放在前面
    }
};
int first[110],co1[110],co2[110],employ[10],d[110][20000],re[10];//re储存传话人物的使用次数
int n,m,cc,len;
void bellman_ford()
{
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<employ[m];j++)
        {
            d[i][j]=inf;//初始化
        }
    }
    d[0][0]=0;
    priority_queue<road>q;
    q.push(road(0,0,0));
    while(!q.empty())
    {
        road qq=q.top();
        q.pop();
        if(qq.dis>d[qq.u][qq.cnt])//已经是更优的解,无需松弛
            continue;
        if(qq.u==n-1)//松弛到达n-1
        {
            printf("%d\n",qq.dis);
            return;
        }
        for(int i=first[qq.u];i!=-1;i=a[i].next)//搜寻邻接表
        {
            int tmp=qq.cnt;
            for(int j=0;j<m;j++)//更新每一个employee在这条路上的使用次数
            {
                re[j]=tmp%3;
                tmp/=3;
            }
            int v=a[i].v;
            int z=a[i].z;
            int cost=a[i].d;
            int t=1;
            if(re[z]==1)
            {
                cost+=co1[z];
            }
            else if(re[z]==2)
            {
                cost+=co2[z];
                t=0;
            }
            if(d[v][qq.cnt+t*employ[z]]>qq.dis+cost)//最短路算法的核心
            {
                d[v][qq.cnt+t*employ[z]]=qq.dis+cost;
                q.push(road(v,qq.cnt+t*employ[z],d[v][qq.cnt+t*employ[z]]));
            }
        }
    }
    printf("-1\n");
}
void add_edge(int u,int v,int z,int d)
{
    a[len].v=v;
    a[len].z=z;
    a[len].d=d;
    a[len].next=first[u];
    first[u]=len++;
}
int main()
{
    employ[0]=1;
    for(int i=1;i<=9;i++)
    {
        employ[i]=3*employ[i-1];//初始化
    }
    while(~scanf("%d%d%d",&n,&m,&cc))
    {
        memset(first,-1,sizeof(first));
        for(int i=0;i<m;i++)
        {
            scanf("%d",&co1[i]);
        }
        for(int i=0;i<m;i++)
        {
            scanf("%d",&co2[i]);
        }
        len=0;
        int x,y,z,d;
        for(int i=0;i<cc;i++)
        {
            scanf("%d%d%d%d",&x,&y,&z,&d);
            add_edge(x,y,z,d);
        }
        bellman_ford();//可以求负权的最短路算法
    }
    return 0;
}

//思路仍待跟进

bellman的核心代码只有4行
for(int k=1;k<=n-1;k++)//进行n-1次松弛
for(int i=1;i<=m;i++)//枚举每一条边
if(dis[v[i]]>dis[u[i]]+w[i])//尝试松弛每一条边
dis[v[i]]=dis[u[i]]+w[i];
这个算法也是遍历n-1遍找过所有的点,至于为什么是n-1呢。dijs算法n-1次遍历是因为有n-1个点需要遍历,这个也是因为最短路是一个不包含回路的路径,无论正负权回路都不能有,那么去掉回路,n个点任意两点之间就最多有n-1条边。但是程序可能在不到n-1次循环就已经找到了所有最短路,说明这个是最坏情况下是n-1次遍历。
dis同样是存在起始点到各个顶点的最短路,这个与dijs不同的是,dijs每次找到最近的点进行松弛操作,而这个bellman则是只要路程更短我就松弛。也是因为这样才能用来解决负权值问题。
那么怎么来看有负权值回路呢,如果有负权值回路,那最短路就不会存在,因为最短路会越来与小。那么在n-1轮松弛后,要是还能松弛就代表有负权值回路。

2010辽宁省赛E(Bellman_Ford最短路,状态压缩DP【三进制】)的更多相关文章

  1. HDU 3001 Travelling(状态压缩DP+三进制)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3001 题目大意:有n个城市,m条路,每条路都有一定的花费,可以从任意城市出发,每个城市不能经过两次以上 ...

  2. Light OJ 1316 A Wedding Party 最短路+状态压缩DP

    题目来源:Light OJ 1316 1316 - A Wedding Party 题意:和HDU 4284 差点儿相同 有一些商店 从起点到终点在走过尽量多商店的情况下求最短路 思路:首先预处理每两 ...

  3. 最短路+状态压缩dp(旅行商问题)hdu-4568-Hunter

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4568 题目大意: 给一个矩阵 n*m (n m<=200),方格里如果是0~9表示通过它时要花 ...

  4. POJ 3311 Hie with the Pie (BFS+最短路+状态压缩)

    题意:类似于TSP问题,只是每个点可以走多次,求回到起点的最短距离(起点为点0). 分析:状态压缩,先预处理各点之间的最短路,然后sum[i][buff]表示在i点,状态为buff时所耗时...... ...

  5. 2021蓝桥杯省赛C++A组试题E 回路计数 状态压缩DP详细版

    2021蓝桥杯省赛C++A组试题E 回路计数 状态压缩DP 题目描述 蓝桥学院由21栋教学楼组成,教学楼编号1到21.对于两栋教学楼a和b,当a和b互质时,a和b之间有一条走廊直接相连,两个方向皆可通 ...

  6. HDU 4511 (AC自动机+状态压缩DP)

    题目链接:  http://acm.hdu.edu.cn/showproblem.php?pid=4511 题目大意:从1走到N,中间可以选择性经过某些点,比如1->N,或1->2-> ...

  7. HDU 3681 Prison Break(状态压缩dp + BFS)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3681 前些天花时间看到的题目,但写出不来,弱弱的放弃了.没想到现在学弟居然写出这种代码来,大吃一惊附加 ...

  8. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

  9. BFS+状态压缩DP+二分枚举+TSP

    http://acm.hdu.edu.cn/showproblem.php?pid=3681 Prison Break Time Limit: 5000/2000 MS (Java/Others)   ...

随机推荐

  1. 常用连续型分布介绍及R语言实现

    常用连续型分布介绍及R语言实现 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数 ...

  2. 高并发下用pdo,文件排它锁,redis三种方法对比

    <?php header('content-type:text/html;charset=utf-8');                 // //无控制     // $DB_DSN = ' ...

  3. Git_错误_02_error: src refspec master does not match any

    现象:在一个目录下初始化仓库之后,就开始push到github,结果出现了这个错误. 错因:初始化仓库之后,并没有使用git add,git commit 命令将文件添加到git仓库中,所以仓库为空, ...

  4. Execution Context(EC) in ECMAScript

    参考资料 执行环境,作用域理解 深入理解JavaScript系列(2):揭秘命名函数表达式 深入理解JavaScript系列(12):变量对象(Variable Object) 深入理解JavaScr ...

  5. [原]NYOJ-大数阶乘-28

    大学生程序代写 //http://acm.nyist.net/JudgeOnline/problem.php?pid=28 /*题目28题目信息运行结果本题排行讨论区大数阶乘 时间限制:3000 ms ...

  6. cmd cvf war包

    1.进入要打包的目录下 --> cmd d: cd \路径 jar -cvf 包名.war * 2.解压 进入需要解压的目录 cd /depa123/webapps/css jar -xvf / ...

  7. XP系统下显示文件或文件的安全选项卡

    在很多的时候,我们需要设置文件或文件夹的权限,这里一般就要用到安全选项卡,但在xp系统下,默认是不显示的,如何调出我们的“安全”选项卡呢? 具体做法:点击“工具”菜单下的"文件夹选项(o). ...

  8. BZOJ1345:[Baltic2007]序列问题

    浅谈栈:https://www.cnblogs.com/AKMer/p/10278222.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?id ...

  9. 洛谷【P1080】国王游戏

    我对贪心的理解:https://www.cnblogs.com/AKMer/p/9776293.html 题目传送门:https://www.luogu.org/problemnew/show/P10 ...

  10. VMware VirtualCenter Server service fails to start with the vpxd.log error: ODBC error: (28000) (1017688)

    Symptoms If you experience an ungraceful shutdown of the database (for example, because of a power o ...