思路:如果一个样本在特征空间中的k个最相近的样本中大多数属于某个类别,则该样本也属于该类别;

这段话中涉及到KNN的三要素:K、距离度量、决策规则

  • K:KNN的算法的结果很大程度取决于K值的选择;

If it's too small, the we gain efficiency but become susceptible to noise and outlier data points.

If it's too large, the we are at risk of over-smoothing our classification results and increasing bias.

  • 距离度量:

欧式距离:

\[d(x,y)=\sqrt{\sum_{k=1}^{n}(x_k-y_k)^2}
\]

曼哈顿距离:

\[d(x,y)=\sqrt{\sum_{k=1}^{n}|x_k-y_k|}
\]

  • 决策规则:

    • 空间中距离越近的点属于一类的可能性就越大;
    • 使用前K个样本中多数类别;

算法过程描述:

  1. 计算测试样本与训练数据之间的距离;
  2. 得到距离按照递增关系排序;
  3. 选取距离最小的K个样本;
  4. 确定选择的K个样本中类别出现的频率;
  5. 选择出现频率最大的类别作为测试样本的类别;

KNN算法的优缺点:

优点:

  • 精度高,对异常值不敏感、无数据输入假定;
  • 简单有效,易理解;

缺点:

  • 计算复杂度高、空间复杂度高;
  • 无法给出任何数据的基础结构信息;

训练简单,测试难;

k-NN更适合低维特征空间,而不适合图片,图片是高维特征空间;

不能进行学习,也就说如果犯错误了,不能变得更聪明;

仅仅依赖于n维空间的distance做分类

KNN算法实现(Python):

默认:已经获取到训练数据\(dataSet \in R^{m \times n}\)、训练集标签\(labels \in R^n\)、测试样本\(inX \in R^{1 \times n}\);

def classify(inX, dataSet, labels, k=3):
# 首先计算测试样本与训练数据之间的欧式距离
m = dataSet.shape[0]
diffMat = np.tile(inX, (m, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistance = sqDiffMat.sum(dim=1)
distance = sqDistance ** 0.5 # 排序,并选择距离最近的前k中样本中类别数目最多的类别
sortedDistanceIndex = distance.argsort()
classCount = {} # 保存距离最近的前k个样本中的类别个数
for i in range(k):
votelabel = labels[sortedDistanceIndex[i]]
classCount[votelabel] = classCount.get(votelabel, 0) + 1 # 有则返回,无则置0
sortedClassCount = np.sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]

sklearn中使用KNN:

# *- coding: utf-8 -*

"""
使用sklearn实现knn
"""
# ===================================== from sklearn import neighbors
from sklearn import datasets # load dataset
iris = datasets.load_iris()
iris_x = iris.data
iris_y = iris.target # model
knn = neighbors.KNeighborsClassifier() # 训练
knn.fit(iris_x, iris_y) # 预测
predictedLabel = knn.predict(iris_x) error = sum(abs(predictedLabel - iris_y)) / len(iris_y)
print(error)

reference

Machine Learning-KNN的更多相关文章

  1. [Machine Learning]k-NN

    k-NN最近邻算法 基本思想: 对未知样本X,从训练样本集中获取与其最相近的k个样本,利用这k个样本的类别预测未知样本X的类别. 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大 ...

  2. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  3. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  4. Machine Learning In Action 第二章学习笔记: kNN算法

    本文主要记录<Machine Learning In Action>中第二章的内容.书中以两个具体实例来介绍kNN(k nearest neighbors),分别是: 约会对象预测 手写数 ...

  5. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  6. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  7. 【Machine Learning】决策树案例:基于python的商品购买能力预测系统

    决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...

  8. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  9. [Machine Learning] 国外程序员整理的机器学习资源大全

    本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C ...

  10. SOME USEFUL MACHINE LEARNING LIBRARIES.

    from: http://www.erogol.com/broad-view-machine-learning-libraries/ http://www.slideshare.net/Vincenz ...

随机推荐

  1. 分享知识-快乐自己:Spring切入点的表达式和通知类型

    1.切入点的表达式 表达式格式: execution([修饰符] 返回值类型 包名.类名.方法名(参数)) 其他的代替: <!-- 完全指定一个方法 --> <!-- <aop ...

  2. 普林斯顿算法(1.3)并查集(union-find算法)——本质就是一个数 下面的子树代表了连在一起的点

    转自:https://libhappy.com/2016/03/algs-1.3/ 假设在互联网中有两台计算机需要互相通信,那么该怎么确定它们之间是否已经连接起来还是需要架设新的线路连接这两台计算机. ...

  3. kylin_学习_01_kylin安装部署

    一.环境准备 根据官方文档,kylin是需要运行在hadoop环境下的,如下图: 1.hadoop环境搭建 参考:hadoop_学习_02_Hadoop环境搭建(单机) 2.hbase环境搭建 参考: ...

  4. json-lib的一些过滤操作

    package demo4; import java.io.Serializable; import net.sf.json.JSONString; public class User impleme ...

  5. [转]_int64、long long 的区别

    大学生程序代写 C++的64位整数[原]by 赤兔 http://baike.baidu.com/view/1235293.htm 在做ACM题时,经常都会遇到一些比较大的整数.而常用的内置整数类型常 ...

  6. 集合划分状压dp

    给一个 $n$ 个点 $m$ 条边的无向图,每条边有 $p_i$ 的概率消失,求图连通的概率 $n \leq 9$ sol: 我们考虑一个 $dp$ $f_{(i,S)}$ 表示只考虑前 $i$ 条边 ...

  7. Sqlite表结构读取工具,word批量转html,在线云剪贴板,文件批量提取工具;

    工欲善其事必先利其器,本周为您推荐工具排行 Sqlite表结构读取工具,word批量转html,在线云剪贴板,文件批量提取工具:     本周我们又要发干货了,准备好接受了吗? 为什么是干货,就是因为 ...

  8. 洛谷 P2149 [SDOI2009]Elaxia的路线

    题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的 ...

  9. html之ajax

    正常情况下,html中的ajax(也就是XMLHttpRequest对象)是不能跨域的.(特殊情况,此处不讨论,请网上Google) ---跨域:是url的协议或ip或端口,其中有一个不同,就是跨域. ...

  10. Azure上部署FTP服务

    FTP是个比较复杂的协议,其协议分为控制层和数据层,工作模式分为主动和被动两种模式. 在默认的Active模式下其工作原理如下: 可以看到,客户端发起FTP的请求道服务器端,FTP的端口是21.用户在 ...