在使用Selector时首先需要通过静态方法open创建Selector对象

 public static Selector open() throws IOException {
return SelectorProvider.provider().openSelector();
}

可以看到首先是调用SelectorProvider的静态方法provider,得到一个Selector的提供者

 public static SelectorProvider provider() {
synchronized (lock) {
if (provider != null)
return provider;
return AccessController.doPrivileged(
new PrivilegedAction<SelectorProvider>() {
public SelectorProvider run() {
if (loadProviderFromProperty())
return provider;
if (loadProviderAsService())
return provider;
provider = sun.nio.ch.DefaultSelectorProvider.create();
return provider;
}
});
}
}

这段代码的逻辑也比较简单,首先判断provider是否已经产生,若已经产生,则直接返回现有的;若没有,则需要调用AccessController的静态方法doPrivileged,该方法是一个native方法,就不说了;可以看到在实现的PrivilegedAction接口中的run方法,做了三次判断:

第一次是根据是系统属性,使用ClassLoader类加载:

 private static boolean loadProviderFromProperty() {
String cn = System.getProperty("java.nio.channels.spi.SelectorProvider");
if (cn == null)
return false;
try {
Class<?> c = Class.forName(cn, true,
ClassLoader.getSystemClassLoader());
provider = (SelectorProvider)c.newInstance();
return true;
} catch (ClassNotFoundException x) {
throw new ServiceConfigurationError(null, x);
} catch (IllegalAccessException x) {
throw new ServiceConfigurationError(null, x);
} catch (InstantiationException x) {
throw new ServiceConfigurationError(null, x);
} catch (SecurityException x) {
throw new ServiceConfigurationError(null, x);
}
}

先获取键值为"java.nio.channels.spi.SelectorProvider"的属性,若没有,则直接返回false;若设置了,则需要使用加载器直接加载系统属性设置的java.nio.channels.spi.SelectorProvider的实现类,再通过反射机制直接产生实例对象并赋值给静态成员provider,最后返回true。

第二次使用ServiceLoader加载:

 private static boolean loadProviderAsService() {
ServiceLoader<SelectorProvider> sl =
ServiceLoader.load(SelectorProvider.class,
ClassLoader.getSystemClassLoader());
Iterator<SelectorProvider> i = sl.iterator();
for (;;) {
try {
if (!i.hasNext())
return false;
provider = i.next();
return true;
} catch (ServiceConfigurationError sce) {
if (sce.getCause() instanceof SecurityException) {
// Ignore the security exception, try the next provider
continue;
}
throw sce;
}
}
}

有关ServiceLoader的加载过程可以看我的上一篇博客【Java】ServiceLoader源码分析,在这里我就不累赘了。
该方法调用ServiceLoader的load加载在"META-INF/services/"路径下指明的SelectorProvider.class的实现类(其实是懒加载,在迭代时才真正加载)得到ServiceLoader对象,通过该对象的带迭代器,遍历这个迭代器;可以看到若是迭代器不为空,则直接返回迭代器保存的第一个元素,即第一个被加载的类的对象,并赋值给provider,返回true;否则返回false;

第三次是使用的默认的SelectorProvider(windows环境为例):

 public class DefaultSelectorProvider {
private DefaultSelectorProvider() {
} public static SelectorProvider create() {
return new WindowsSelectorProvider();
}
}

可以看到直接返回了WindowsSelectorProvider赋值给provider ;

此时provider无论如何都已经有了,接下来就是调用provider的openSelector方法。

WindowsSelectorProvider的openSelector方法:

 public class WindowsSelectorProvider extends SelectorProviderImpl {
public WindowsSelectorProvider() {
} public AbstractSelector openSelector() throws IOException {
return new WindowsSelectorImpl(this);
}
}

可以看到仅仅是产生了WindowsSelectorImpl:

 WindowsSelectorImpl(SelectorProvider var1) throws IOException {
super(var1);
this.wakeupSourceFd = ((SelChImpl)this.wakeupPipe.source()).getFDVal();
SinkChannelImpl var2 = (SinkChannelImpl)this.wakeupPipe.sink();
var2.sc.socket().setTcpNoDelay(true);
this.wakeupSinkFd = var2.getFDVal();
this.pollWrapper.addWakeupSocket(this.wakeupSourceFd, 0);
}

WindowsSelectorImpl首先调用父类SelectorImpl的构造方法:

 protected Set<SelectionKey> selectedKeys = new HashSet();
protected HashSet<SelectionKey> keys = new HashSet();
private Set<SelectionKey> publicKeys;
private Set<SelectionKey> publicSelectedKeys; protected SelectorImpl(SelectorProvider var1) {
super(var1);
if (Util.atBugLevel("1.4")) {
this.publicKeys = this.keys;
this.publicSelectedKeys = this.selectedKeys;
} else {
this.publicKeys = Collections.unmodifiableSet(this.keys);
this.publicSelectedKeys = Util.ungrowableSet(this.selectedKeys);
} }

SelectorImpl同样调用父类AbstractSelector的构造:

 protected AbstractSelector(SelectorProvider provider) {
this.provider = provider;
}

此时的provider就是刚才产生的WindowsSelectorProvider对象;
在SelectorImpl中还会对其成员有一系列的赋值操作;
上述都完成后才继续完成WindowsSelectorImpl的构造。

WindowsSelectorImpl在进行this.wakeupSourceFd = ((SelChImpl)this.wakeupPipe.source()).getFDVal()之前,其wakeupPipe成员如下:

 private final Pipe wakeupPipe = Pipe.open();

wakeupPipe管道通过Pipe.open()赋值:

 public static Pipe open() throws IOException {
return SelectorProvider.provider().openPipe();
}

可以看到实际上 SelectorProvider.provider()的provider的openPipe方法,而这个provider就是WindowsSelectorProvider,而WindowsSelectorProvider继承自SelectorProviderImpl,openPipe方法是在SelectorProviderImpl里实现的:

 public Pipe openPipe() throws IOException {
return new PipeImpl(this);
}

该方法直接产生了PipeImpl对象,并将WindowsSelectorProvider对象传入进去:

 PipeImpl(SelectorProvider var1) throws IOException {
try {
AccessController.doPrivileged(new PipeImpl.Initializer(var1));
} catch (PrivilegedActionException var3) {
throw (IOException)var3.getCause();
}
}

可以看到这个构造方法实际上是以特权模式运行的PipeImpl的内部类Initializer的run方法(doPrivileged需要的参数是PrivilegedExceptionAction接口的实现类,该接口只有run方法):
Initializer 的初始化:

 private class Initializer implements PrivilegedExceptionAction<Void> {
private final SelectorProvider sp;
private IOException ioe; private Initializer(SelectorProvider var2) {
this.ioe = null;
this.sp = var2;
}
......
}

该构造方法给sp赋值为传入进来的WindowsSelectorProvider对象,令ioe=null;
其所实现的run方法如下:

 public Void run() throws IOException {
PipeImpl.Initializer.LoopbackConnector var1 = new PipeImpl.Initializer.LoopbackConnector();
var1.run();
if (this.ioe instanceof ClosedByInterruptException) {
this.ioe = null;
Thread var2 = new Thread(var1) {
public void interrupt() {
}
};
var2.start(); while(true) {
try {
var2.join();
break;
} catch (InterruptedException var4) {
;
}
} Thread.currentThread().interrupt();
} if (this.ioe != null) {
throw new IOException("Unable to establish loopback connection", this.ioe);
} else {
return null;
}
}

首先产生LoopbackConnector 对象,是Initializer的内部类,而且实现了Runnable接口:

 private class LoopbackConnector implements Runnable {
private LoopbackConnector() {
}
}

其实现的run方法如下:

 public void run() {
ServerSocketChannel var1 = null;
SocketChannel var2 = null;
SocketChannel var3 = null; try {
ByteBuffer var4 = ByteBuffer.allocate(16);
ByteBuffer var5 = ByteBuffer.allocate(16);
InetAddress var6 = InetAddress.getByName("127.0.0.1"); assert var6.isLoopbackAddress(); InetSocketAddress var7 = null; while(true) {
if (var1 == null || !var1.isOpen()) {
var1 = ServerSocketChannel.open();
var1.socket().bind(new InetSocketAddress(var6, 0));
var7 = new InetSocketAddress(var6, var1.socket().getLocalPort());
} var2 = SocketChannel.open(var7);
PipeImpl.RANDOM_NUMBER_GENERATOR.nextBytes(var4.array()); do {
var2.write(var4);
} while(var4.hasRemaining()); var4.rewind();
var3 = var1.accept(); do {
var3.read(var5);
} while(var5.hasRemaining()); var5.rewind();
if (var5.equals(var4)) {
PipeImpl.this.source = new SourceChannelImpl(Initializer.this.sp, var2);
PipeImpl.this.sink = new SinkChannelImpl(Initializer.this.sp, var3);
break;
} var3.close();
var2.close();
}
} catch (IOException var18) {
try {
if (var2 != null) {
var2.close();
} if (var3 != null) {
var3.close();
}
} catch (IOException var17) {
;
} Initializer.this.ioe = var18;
} finally {
try {
if (var1 != null) {
var1.close();
}
} catch (IOException var16) {
;
} } }

在这个run方法中首先定义了三个Channel一个ServerSocketChannel和两个SocketChannel,然后申请了两个十六字节的ByteBuffer缓冲区,定义了一个回送地址var6;在while循环中先检查ServerSocketChannel是否开启了,若没有则需要调用open方法开启并赋值给var1,绑定地址为var6即回送地址,端口为0,令var7这个InetSocketAddress对象的地址是var6,端口是ServerSocketChannel的端口;ServerSocketChannel初始化完毕,初始化一个SocketChannel即var2,通过刚才的var7这个InetSocketAddress对象和ServerSocketChannel建立连接;

在PipeImpl里有一个静态成员:

 private static final Random RANDOM_NUMBER_GENERATOR = new SecureRandom();

RANDOM_NUMBER_GENERATOR 听名字就知道它是用来生成随机数;
通过RANDOM_NUMBER_GENERATOR将从生成的随机数存放在其中一个缓冲区ByteBuffer(var4)中,然后通过刚才连接好的SocketChannel即var2的write方法写入缓冲区中的所有可用数据发送给ServerSocketChannel;令var4缓冲区标志置0;接着ServerSocketChannel调用accept方法侦听刚才的连接产生一个SocketChannel对象var3,从var3中读取数据存放在缓冲区var5中,令var5缓冲区标志置0;然后比较var4和var5中的内容是否一致,若是一致则给PipeImpl的成员source和sink分别初始化保存起来,若不一致就继续循环,不断地重复上述过程,直至Pipe通道成功建立;至此结束LoopbackConnector的run方法。
其在连接建立的过程中若是出现了异常会通过Initializer的ioe成员保存异常。

再回到Initializer的run方法,在完成LoopbackConnector的run方法后,再根据ioe判读是否在刚才的连接建立中出现了ClosedByInterruptException异常,若是出现还需要通过线程启动LoopbackConnector的run方法直至其结束;若不是ClosedByInterruptException异常则直接抛出IOException。

至此PipeImpl的构造结束,再回到WindowsSelectorImpl的构造,通过上述的操作产生的PipeImpl对象就赋值给了wakeupPipe成员;wakeupPipe的source就是刚才产生的SourceChannelImpl对象,wakeupPipe的sink就是刚才产生的SinkChannelImpl对象,再使用wakeupSourceFd保存source的fdVal值和wakeupSinkFd保存sink的fdVal值;并且禁用Nagle算法,最后使用pollWrpper成员保存source的fdVal值。

上述建立的这个连接通道的主要目的不是为了确保能建立连接,而是为了解决Selector的select方法的阻塞问题,调用select方法时只有注册在Selector上的channel有事件就绪时才会被唤醒,而Selector提供的wakeup方法就利用了上述建立好的通道,通过SinkChannel给SourceChannel发送信号量,使得select被唤醒,具体实现会在后续的博客给出。

Selector到此创建完毕。

【Java】NIO中Selector的创建源码分析的更多相关文章

  1. Netty中NioEventLoopGroup的创建源码分析

    NioEventLoopGroup的无参构造: public NioEventLoopGroup() { this(0); } 调用了单参的构造: public NioEventLoopGroup(i ...

  2. 【Java】NIO中Channel的注册源码分析

    Channel的注册是在SelectableChannel中定义的: public abstract SelectionKey register(Selector sel, int ops, Obje ...

  3. RocketMQ中Broker的启动源码分析(二)

    接着上一篇博客  [RocketMQ中Broker的启动源码分析(一)] 在完成准备工作后,调用start方法: public static BrokerController start(Broker ...

  4. RocketMQ中Broker的启动源码分析(一)

    在RocketMQ中,使用BrokerStartup作为启动类,相较于NameServer的启动,Broker作为RocketMQ的核心可复杂得多 [RocketMQ中NameServer的启动源码分 ...

  5. RocketMQ中Broker的消息存储源码分析

    Broker和前面分析过的NameServer类似,需要在Pipeline责任链上通过NettyServerHandler来处理消息 [RocketMQ中NameServer的启动源码分析] 实际上就 ...

  6. JDK中String类的源码分析(二)

    1.startsWith(String prefix, int toffset)方法 包括startsWith(*),endsWith(*)方法,都是调用上述一个方法 public boolean s ...

  7. Springboot中mybatis执行逻辑源码分析

    Springboot中mybatis执行逻辑源码分析 在上一篇springboot整合mybatis源码分析已经讲了我们的Mapper接口,userMapper是通过MapperProxy实现的一个动 ...

  8. RocketMQ中PullConsumer的启动源码分析

    通过DefaultMQPullConsumer作为默认实现,这里的启动过程和Producer很相似,但相比复杂一些 [RocketMQ中Producer的启动源码分析] DefaultMQPullCo ...

  9. Java ThreadPoolExecutor线程池原理及源码分析

    一.源码分析(基于JDK1.6) ThreadExecutorPool是使用最多的线程池组件,了解它的原始资料最好是从从设计者(Doug Lea)的口中知道它的来龙去脉.在Jdk1.6中,Thread ...

随机推荐

  1. 关于 tornado.simple_httpclient SimpleAsyncHTTPClient fetch下载大文件,默认60s的问题

    遇到了线上发布任务失败的情况,要发布的包大小77M,网络OK,手动测试速度是1.7M,下载77M文件用时17s左右,理论上完全没有问题 但是,从日志看确实是download的时候,60s 超时了,而且 ...

  2. 红米note.线刷

    1.第一代 红米note 时间:20180121 这次 线刷之后,摄像头还是模糊,扫描小一点的二维码的时候 还是一片模模糊糊... 2.ZC:我下载的“通用刷机工具”名为:MiFlash2017-12 ...

  3. jquery---each循环的退出

    jquery循环函数each退出使用 return false(等效break); return true(continue)    此时return 退出的是each函数,并不影响其父级函数的ret ...

  4. EAV模型

    了解EAV设计基本原理的最好方法就是理解行建模(row modelling,其中EAV是广义形式). 以一超市数据库为例,必须管理数以千计的产品和品牌,其中许多产品存在期很短暂.那么,显而易见,产品名 ...

  5. 处理json的工具类({本类为处理json的工具类})

    <jackson.version>2.2.3</jackson.version> <!-- json --> <dependency> <grou ...

  6. 数据结构C语言版干货------->线性表之顺序表

    一:头文件定义 /*************************************************************************** *项目 数据结构 *概要 逻辑 ...

  7. windows下面的python的MySQLdb环境安装

    什么是MySQLdb? MySQLdb 是用于Python链接Mysql数据库的接口,它实现了 Python 数据库 API 规范 V2.0,基于 MySQL C API 上建立的. 如何安装MySQ ...

  8. 九省联考2018 D1T1 一双木棋

    Alice和Bob轮流在n*m的棋盘上放棋子 a[i][j]表示Alice放在这的收益,b[i][j]表示Bob放在这的收益 一个地方没有棋子且它的左边上边都有棋子才能放棋子,边界外视为有一圈棋子 n ...

  9. myod中遇到的问题

    一.准备工作 首先在编程之前遇到的第一个问题就是要了解需要编出一个怎样的代码,了解od -tx -tc的具体意思,并观察其输出结果. -tc代表着输出ASCII字符,而-tx则是代表着输出ASCII字 ...

  10. Android的各国语言的缩写

    语言包在android工程中的对应关系: 中文(中国):values-zh-rCN 中文(台湾):values-zh-rTW 中文(香港):values-zh-rHK 英语(美国):values-en ...