uva11361 特殊数的数量(数位dp)
题目大意:给你一个n-m的区间,问你这个闭区间内的特殊数有几个,特殊数的要求是 数的本身 和 各位数字之和 mod k 等于0.
思路:刚接触数位dp,看了网上的题解,说用dp[i][j][s]表示,总共有i位,数字本身mod k为j,各位数之和mod k为s的数量,然后状态转移方程是dp[i][(j+x)%k][(s*10+x)%k]+=dp[i][j][s],第一次看这方程感觉好有道理,然后看代码发现数位dp最重要的还是计数原理,过了好久才a了这道题。主要的思路放在代码注释里了。
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
using namespace std;
typedef pair<int,int> pii;
typedef long long ll;
const double PI=acos(-1.0);
int fact[10]= {1,1,2,6,24,120,720,5040,40320,362880};
const int maxn = 100005;
ll dp[11][90][90];
int po[11];
void brea(ll n)
{
stack<int >s;
while(n>0)
{
s.push(n%10);
n/=10;
}
while(!s.empty())
{
po[++po[0]]=s.top();
s.pop();
}
//此时po[0]存的是位数 然后其他的就是从第一位到最后一位了
}
ll cs(ll n,ll k) {
memset(dp,0,sizeof(dp));
memset(po,0,sizeof(po));
brea(n); //把n拆开放到数组中
int ans=0,ant=0;
for(int i=1; i<=po[0]; i++)
{
for(int j=0; j<k; j++)
{ //处理 0-69 因为只有十位上是0-6时 s才可以取到0和9
for(int m=0; m<k; m++)
{
for(int s=0; s<=9; s++)
{
dp[i][(j+s)%k][(m*10+s)%k]+=dp[i-1][j][m];
}
}
}
for(int j=0; j<po[i]; j++) //处理70 71 72 而73没有被计算
{
//由于这里是 < 所以在处理第一位的时候 7并没有被计算 所以下一次循环时 只有0-6被处理了
dp[i][(ans+j)%k][(ant*10+j)%k]++;
}
ans=(ans+po[i])%k; //各位数之和mod
ant=(ant*10+po[i])%k; //本身mod
}
if(ans==0&&ant==0)dp[po[0]][0][0]++; //处理73
return dp[po[0]][0][0];
}
int main() {
int t;
cin>>t;
while(t--)
{
ll n,m,k;
cin>>n>>m>>k;
if(k>90) //由于n和m最多10位 最大也就10个9 如果k为91 那就肯定不存在这样的数
{
cout<<0<<endl;
continue;
}
cout<<cs(m,k)-cs(n-1,k)<<endl;
}
}
uva11361 特殊数的数量(数位dp)的更多相关文章
- BZOJ3530:[SDOI2014]数数(AC自动机,数位DP)
Description 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3 ...
- [SDOI2014]数数 --- AC自动机 + 数位DP
[SDOI2014]数数 题目描述: 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串. 例如当S=(22,333,0233)时,233是幸运数,2333 ...
- 【bzoj3530】[Sdoi2014]数数 AC自动机+数位dp
题目描述 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3223不是幸运 ...
- BZOJ3530: [Sdoi2014]数数(Trie图,数位Dp)
Description 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3 ...
- HDU-4518 吉哥系列故事——最终数 AC自动机+数位DP
题意:如果一个数中的某一段是长度大于2的菲波那契数,那么这个数就被定义为F数,前几个F数是13,21,34,55......将这些数字进行编号,a1 = 13, a2 = 21.现给定一个数n,输出和 ...
- UVA11361 Investigating Div-Sum Property(数位dp)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud 题目意思:问在区间[A,B]有多少个数不仅满足自身是k的倍数,而且其各个位数上的和 ...
- bzoj3209 花神的数论题 (二进制数位dp)
二进制数位dp,就是把原本的数字转化成二进制而以,原来是10进制,现在是二进制来做,没有想像的那么难 不知到自己怎么相出来的...感觉,如果没有一个明确的思路,就算做出来了,也并不能锻炼自己的能力,因 ...
- BZOJ 3530: [Sdoi2014]数数 [AC自动机 数位DP]
3530: [Sdoi2014]数数 题意:\(\le N\)的不含模式串的数字有多少个,\(n=|N| \le 1200\) 考虑数位DP 对于长度\(\le n\)的,普通套路DP\(g[i][j ...
- 1009 数字1的数量 数位dp
1级算法题就这样了,前途渺茫啊... 更新一下博客,我刚刚想套用数位dp的模板,发现用那个模板也是可以做到,而且比第二种方法简单很多 第一种方法:我现在用dp[pos][now]来表示第pos位数字为 ...
随机推荐
- vmstat详细说明
下面是关于Unix下vmstat命令的详细介绍,收录在这里,以备日后参考 vmstat是用来实时查看内存使用情况,反映的情况比用top直观一些.作为一个CPU监视器,vmstat命令比iostat命令 ...
- Emulator PANIC: Could not open: AVD2.3.1
这是这两年的sdk才需要这样,以前这样根本没错的 在环境变量 里面增加一个系统变量ANDROID_SDK_HOME,值就是当前的系统用户文件夹的位置.比如c:\\Users\xxx(不要加.andro ...
- lucene、solr中的日期衰减方法-------function query --尚未测试在solr4.8
经常有一种情景是这样的:我们索引了N年的文章,而查询时候无论直接用相关度.或者用时间排序,都是比较鲁莽的:我们想要一种既要相关度比较高,又要时间上比较新的文章. 这时候的解决办法就是,自定义日期衰减的 ...
- Android getWidth和getMeasuredWidth的区别
getWidth 得到的事某个View的实际尺寸. getMeasuredWidth 得到的是某个View想要在parent view里面占的大小 相比你也见过这样的解释,听起来这样的解释也是云里雾里 ...
- 2018多校第九场1010 (HDU6424) 数学
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6424 解法:找规律.因为最多三项,a1^a2^a3可以拆成(a1+2)+(a2+1)*a3,然后建成数 ...
- ==, equals, hashcode的理解
一.java对象的比较 等号(==): 对比对象实例的内存地址(也即对象实例的ID),来判断是否是同一对象实例:又可以说是判断对象实例是否物理相等: equals(): 对比两个对象实例是否相等. 当 ...
- JavaPersistenceWithMyBatis3笔记-第1章-001
一.介绍 1.项目结构 2.数据库结构 二.代码 1.Mapper package com.mybatis3.mappers; import java.util.List; import com.my ...
- 269D Maximum Waterfall
传送门 题目大意 给出一些墙,水从高往低流,每次只能到达一面墙,选择一个路径,使得路径上的流量的最小值最大. 分析 这是一道经典的扫描线题,我们发现能够合法的线段对数至多只有n对.将一条线段拆成两个点 ...
- 创建Mat对象
Mat 是一个非常优秀的图像类,它同时也是一个通用的矩阵类,可以用来创建和操作多维矩阵.有多种方法创建一个 Mat 对象. 1.构造函数方法 下面是一个使用构造函数创建对象的例子. 常用的构造函数 2 ...
- javaSE阶段中 关于Sring类方法的应用
String类中有很多常用的方法,今天就一些方法涉及到的一些常见题 做两个小Demo 其中一个要求如下: 获取指定字符串中,大写字母.小写字母.数字 的个数 题目分析 * 为了统计大写字母.小写字 ...