Road Networks

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Description

 

There is a road network comprised by M<tex2html_verbatim_mark> roads and N<tex2html_verbatim_mark> cities. For convenience, we use {1, 2,..., N}<tex2html_verbatim_mark> to denote the N<tex2html_verbatim_mark> cities. Each road between two cities i<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> , where 1i<tex2html_verbatim_mark> , jN<tex2html_verbatim_mark> and ij<tex2html_verbatim_mark> , has two types: One type is bidirectional, which allows a citizen to drive a car from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> (denoted by ij<tex2html_verbatim_mark> ) and from j<tex2html_verbatim_mark> to i<tex2html_verbatim_mark> (denoted by ji<tex2html_verbatim_mark> ). The other type is unidirectional, which allows a citizen to drive a car following exactly one direction, either from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> or from j<tex2html_verbatim_mark> to i<tex2html_verbatim_mark> .

We say that City j<tex2html_verbatim_mark> is reachable from City i<tex2html_verbatim_mark> if one can drive a car from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> , visiting a sequence of cities c1c2,..., ck<tex2html_verbatim_mark> for k 0<tex2html_verbatim_mark> , such thatic1c2...ckj<tex2html_verbatim_mark> . (Every city is always reachable from itself.) A region is a maximal set of cities so that the following mutually reachable property holds: for two arbitrary cities i<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> , i<tex2html_verbatim_mark> is reachable from j<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> is also reachable from i<tex2html_verbatim_mark> . The adjective ``maximal" means that if we include any other city in the given region, the mutually reachable property cannot be retained. Given a road network, your task is to write a computer program to compute the number of regions in the road network.

Technical Specification

  1. We use {1, 2,..., N}<tex2html_verbatim_mark> to denote the N<tex2html_verbatim_mark> cities.
  2. M2000<tex2html_verbatim_mark> is a non-negative integer
  3. N1000<tex2html_verbatim_mark> is a positive integer.
  4. If a road between i<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> is bidirectional, then we use two order pairs (ij)<tex2html_verbatim_mark> and (ji)<tex2html_verbatim_mark> to represent it. Otherwise, if a road between i<tex2html_verbatim_mark>and j<tex2html_verbatim_mark> is unidirectional from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> (respectively, j<tex2html_verbatim_mark> to i<tex2html_verbatim_mark> ), we use ( i<tex2html_verbatim_mark> , j<tex2html_verbatim_mark> ) (respectively, ( j<tex2html_verbatim_mark> , i<tex2html_verbatim_mark> )) to represent it.

Input

The input consists of a number of test cases. The first line of the input file contains an integer indicating the number of test cases to follow. Each test case consists of a road network, which has the following format: the first line of each test case contains two numbers, N<tex2html_verbatim_mark>and M<tex2html_verbatim_mark> , separated by a single space. The next M<tex2html_verbatim_mark> lines contain the description of M<tex2html_verbatim_mark> roads such that one line contains two cities representing an order pair (ij)<tex2html_verbatim_mark> . Each line is represented by two positive numbers separated by a single space; the first number representing the former element in the order pair and the second number representing the latter element in the order pair. A ` 0' at the (M+ 2)<tex2html_verbatim_mark> -th line of each test case (except for the last test case) indicates the end of this test case.

The next test case starts after the previous ending symbol `0'. Finally, a `-1' signals the end of the whole inputs.

Output

The output contains one line for each test case. Each line contains an integer, which is the number of the regions in the given road network.

Sample Input

2
3 2
1 2
1 3
0
3 3
1 2
2 3
3 1
-1

Sample Output

3
1 题目大意:给你n个点,m条有向边。问你这个图中的scc个数。 解题思路:求强连通分量的模板题,Tarjan算法水过。
/*
Tarjan
求强连通分量个数
*/
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<stack>
#include<vector>
#include<queue>
using namespace std;
const int maxn = 1e5+200;
vector<int>G[maxn];
int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt;
stack<int>S;
void dfs(int u){
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u);
for(int i = 0;i < G[u].size(); i++){
int v = G[u][i];
if(!pre[v]){
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}else if(!sccno[v]){
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if(lowlink[u] == pre[u]){
scc_cnt++;
for(;;){
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
}
void find_scc(int n){
dfs_clock = scc_cnt = 0;
while(!S.empty()) S.pop();
memset(sccno , 0, sizeof(sccno));
memset(pre, 0, sizeof(pre));
for(int i = 1; i <= n; i++){
if(!pre[i]) dfs(i);
}
}
int main(){
int T,n,m;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int a,b;
for(int i = 0; i < m; i++){
scanf("%d%d",&a,&b);
G[a].push_back(b);
}
scanf("%d",&a);
find_scc(n);
printf("%d\n",scc_cnt);
for(int i = 0; i <= n; i++){
G[i].clear();
}
}
return 0;
}

  

UVALive 4262——Trip Planning——————【Tarjan 求强连通分量个数】的更多相关文章

  1. UESTC 901 方老师抢银行 --Tarjan求强连通分量

    思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大.所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个D ...

  2. tarjan求强连通分量+缩点+割点以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  3. Tarjan求强连通分量,缩点,割点

    Tarjan算法是由美国著名计算机专家发明的,其主要特点就是可以求强连通分量和缩点·割点. 而强联通分量便是在一个图中如果有一个子图,且这个子图中所有的点都可以相互到达,这个子图便是一个强连通分量,并 ...

  4. tarjan求强连通分量+缩点+割点/割桥(点双/边双)以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  5. HDU 1827 Summer Holiday(tarjan求强连通分量+缩点构成新图+统计入度+一点贪心思)经典缩点入门题

    Summer Holiday Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  6. CCF 高速公路 tarjan求强连通分量

    问题描述 某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路. 现在,大臣们帮国王拟了一个修高速公路的 ...

  7. tarjan求强连通分量(模板)

    https://www.luogu.org/problem/P2341 #include<cstdio> #include<cstring> #include<algor ...

  8. Tarjan求强连通分量、求桥和割点模板

    Tarjan 求强连通分量模板.参考博客 #include<stdio.h> #include<stack> #include<algorithm> using n ...

  9. poj 2186 tarjan求强连通分量

    蕾姐讲过的例题..玩了两天后才想起来做 貌似省赛之后确实变得好懒了...再努力两天就可以去北京玩了! 顺便借这个题记录一下求强连通分量的算法 1 只需要一次dfs 依靠stack来实现的tarjan算 ...

随机推荐

  1. Mybatis+Mysql 返回主键的值

    需求:使用MyBatis往MySQL数据库中插入一条记录后,需要返回该条记录的自增主键值. 方法:在mapper中指定keyProperty属性,示例如下: <insert id="i ...

  2. mariadb复制

    实验环境:CentOS7 #安装mariadb-server #主数据库: [root@~ localhost]#vim /etc/my.cnf.d/server.cnf [mysqld] skip_ ...

  3. 【转载】ruby 中数组函数示例(1)(转)

    函数名称 说明 示例 &      数组与,返回两数组的交集 [1,2] & [2,3] =>[2]   * 复制数组n次 [1,2]*2       => [1,2,1, ...

  4. bootstrap插件使用

    首先,针对导航栏(单页面导航插件(缓慢跳转)) 引入插件:jquery.singlePageNav.min.js   下载链接:http://pan.baidu.com/s/1jHBaQxg  密码: ...

  5. eclipse中使用Maven插件报错:-Dmaven.multiModuleProjectDirectory system property is not set. Check $M2_HOME environment variable and mvn script match.

    步骤: 1.添加M2_HOME的环境变量 2.Preference->Java->Installed JREs->Edit 选择一个jdk 3.添加 -Dmaven.multiMod ...

  6. mahout 实现canopy

    环境: mahout-0.8 hadoop-1.1.2 ubuntu-12.04 理论这里就不说了,直接上实例: 下面举一个例子. 数据准备: canopy.dat文件,COPY到HDFS上,文件内容 ...

  7. 学习过程的记录:实验室电脑上的jdk环境变量

    亲爱的,先区分安装路径和软件的存放路径好不好呢? 1.变量名:JAVA_HOME 变量值:D:\Program Files\Java\jdk1.7.0_21 2. 编辑 Path(粘贴到最后) %JA ...

  8. Google浏览器插件

    Scholarscope XPath Helper Web Scraper JSON-handle  User-Agent Swicher  Markdown Here

  9. cookie 、Session 和自定义分页

    cookie cookie的由来 大家都知道Http协议是无状态的. 无状态的意思 是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系, 他不会受前面的请求响应情况直接影响, ...

  10. Access denied for user 'xxx'@'localhost' 问题的解决方法

    使用SpringMvc + Mybatis + Mysql搭建的架构,调试时出现了以下错误: HTTP Status 500 - Request processing failed; nested e ...