UVALive 4262——Trip Planning——————【Tarjan 求强连通分量个数】
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu
Description
There is a road network comprised by M<tex2html_verbatim_mark> roads and N<tex2html_verbatim_mark> cities. For convenience, we use {1, 2,..., N}<tex2html_verbatim_mark> to denote the N<tex2html_verbatim_mark> cities. Each road between two cities i<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> , where 1i<tex2html_verbatim_mark> , jN<tex2html_verbatim_mark> and ij<tex2html_verbatim_mark> , has two types: One type is bidirectional, which allows a citizen to drive a car from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> (denoted by ij<tex2html_verbatim_mark> ) and from j<tex2html_verbatim_mark> to i<tex2html_verbatim_mark> (denoted by ji<tex2html_verbatim_mark> ). The other type is unidirectional, which allows a citizen to drive a car following exactly one direction, either from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> or from j<tex2html_verbatim_mark> to i<tex2html_verbatim_mark> .
We say that City j<tex2html_verbatim_mark> is reachable from City i<tex2html_verbatim_mark> if one can drive a car from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> , visiting a sequence of cities c1, c2,..., ck<tex2html_verbatim_mark> for k 0<tex2html_verbatim_mark> , such thatic1c2...ckj<tex2html_verbatim_mark> . (Every city is always reachable from itself.) A region is a maximal set of cities so that the following mutually reachable property holds: for two arbitrary cities i<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> , i<tex2html_verbatim_mark> is reachable from j<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> is also reachable from i<tex2html_verbatim_mark> . The adjective ``maximal" means that if we include any other city in the given region, the mutually reachable property cannot be retained. Given a road network, your task is to write a computer program to compute the number of regions in the road network.
Technical Specification
- We use {1, 2,..., N}<tex2html_verbatim_mark> to denote the N<tex2html_verbatim_mark> cities.
- M2000<tex2html_verbatim_mark> is a non-negative integer
- N1000<tex2html_verbatim_mark> is a positive integer.
- If a road between i<tex2html_verbatim_mark> and j<tex2html_verbatim_mark> is bidirectional, then we use two order pairs (i, j)<tex2html_verbatim_mark> and (j, i)<tex2html_verbatim_mark> to represent it. Otherwise, if a road between i<tex2html_verbatim_mark>and j<tex2html_verbatim_mark> is unidirectional from i<tex2html_verbatim_mark> to j<tex2html_verbatim_mark> (respectively, j<tex2html_verbatim_mark> to i<tex2html_verbatim_mark> ), we use ( i<tex2html_verbatim_mark> , j<tex2html_verbatim_mark> ) (respectively, ( j<tex2html_verbatim_mark> , i<tex2html_verbatim_mark> )) to represent it.
Input
The input consists of a number of test cases. The first line of the input file contains an integer indicating the number of test cases to follow. Each test case consists of a road network, which has the following format: the first line of each test case contains two numbers, N<tex2html_verbatim_mark>and M<tex2html_verbatim_mark> , separated by a single space. The next M<tex2html_verbatim_mark> lines contain the description of M<tex2html_verbatim_mark> roads such that one line contains two cities representing an order pair (i, j)<tex2html_verbatim_mark> . Each line is represented by two positive numbers separated by a single space; the first number representing the former element in the order pair and the second number representing the latter element in the order pair. A ` 0' at the (M+ 2)<tex2html_verbatim_mark> -th line of each test case (except for the last test case) indicates the end of this test case.
The next test case starts after the previous ending symbol `0'. Finally, a `-1' signals the end of the whole inputs.
Output
The output contains one line for each test case. Each line contains an integer, which is the number of the regions in the given road network.
Sample Input
2
3 2
1 2
1 3
0
3 3
1 2
2 3
3 1
-1
Sample Output
3
1 题目大意:给你n个点,m条有向边。问你这个图中的scc个数。 解题思路:求强连通分量的模板题,Tarjan算法水过。
/*
Tarjan
求强连通分量个数
*/
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<stack>
#include<vector>
#include<queue>
using namespace std;
const int maxn = 1e5+200;
vector<int>G[maxn];
int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt;
stack<int>S;
void dfs(int u){
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u);
for(int i = 0;i < G[u].size(); i++){
int v = G[u][i];
if(!pre[v]){
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}else if(!sccno[v]){
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if(lowlink[u] == pre[u]){
scc_cnt++;
for(;;){
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
}
void find_scc(int n){
dfs_clock = scc_cnt = 0;
while(!S.empty()) S.pop();
memset(sccno , 0, sizeof(sccno));
memset(pre, 0, sizeof(pre));
for(int i = 1; i <= n; i++){
if(!pre[i]) dfs(i);
}
}
int main(){
int T,n,m;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int a,b;
for(int i = 0; i < m; i++){
scanf("%d%d",&a,&b);
G[a].push_back(b);
}
scanf("%d",&a);
find_scc(n);
printf("%d\n",scc_cnt);
for(int i = 0; i <= n; i++){
G[i].clear();
}
}
return 0;
}
UVALive 4262——Trip Planning——————【Tarjan 求强连通分量个数】的更多相关文章
- UESTC 901 方老师抢银行 --Tarjan求强连通分量
思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大.所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个D ...
- tarjan求强连通分量+缩点+割点以及一些证明
“tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄> 自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...
- Tarjan求强连通分量,缩点,割点
Tarjan算法是由美国著名计算机专家发明的,其主要特点就是可以求强连通分量和缩点·割点. 而强联通分量便是在一个图中如果有一个子图,且这个子图中所有的点都可以相互到达,这个子图便是一个强连通分量,并 ...
- tarjan求强连通分量+缩点+割点/割桥(点双/边双)以及一些证明
“tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄> 自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...
- HDU 1827 Summer Holiday(tarjan求强连通分量+缩点构成新图+统计入度+一点贪心思)经典缩点入门题
Summer Holiday Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- CCF 高速公路 tarjan求强连通分量
问题描述 某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路. 现在,大臣们帮国王拟了一个修高速公路的 ...
- tarjan求强连通分量(模板)
https://www.luogu.org/problem/P2341 #include<cstdio> #include<cstring> #include<algor ...
- Tarjan求强连通分量、求桥和割点模板
Tarjan 求强连通分量模板.参考博客 #include<stdio.h> #include<stack> #include<algorithm> using n ...
- poj 2186 tarjan求强连通分量
蕾姐讲过的例题..玩了两天后才想起来做 貌似省赛之后确实变得好懒了...再努力两天就可以去北京玩了! 顺便借这个题记录一下求强连通分量的算法 1 只需要一次dfs 依靠stack来实现的tarjan算 ...
随机推荐
- 游戏中的 2D 可见性
转自:http://www.gameres.com/469173.html 拖动圆点转一圈,看看玩家都能看到些什么: 这个算法也能计算出给定光源所照亮的区域.对每条光线,我们可以构建出被照亮区域的光线 ...
- Project Web Server PSI 接口一些常用操作
对Project Web Server进行二次开发,每天都把自己折腾到12点以后才休息,到处都是坑,研究那些烦人的PSI,国内根本查不到PSI相关的资料,对照API文档一点点谷歌资料,全部英文资料,开 ...
- oracle 实现 自增主键功能
转自:https://blog.csdn.net/zxh2075/article/details/78488141 之前有一项工作是将mysql的数据库实现转移到oracle,遇到了自增主键实现的问题 ...
- LAMP 1.6 Discuz安装
1.下载 ...
- css之布局
布局一直是页面制作很重要的部分,有个良好的布局不仅在页面上呈现很好的效果,还对后续功能扩展有重要的作用.本文主要讨论一下几种布局: 水平居中布局 垂直居中布局 多列布局 自适应布局 stracky-f ...
- 8、Transcriptome Assembly
Created by Benjamin M Goetz, last modified on Jun 29, 2015 Assembly of RNA-seq short reads into a tr ...
- Python实现R包brainwaver中的compute.FDR函数
FDR(false discovery rate),是统计学中常见的一个名词,翻译为伪发现率,其意义为是 错误拒绝(拒绝真的(原)假设)的个数占所有被拒绝的原假设个数的比例的期望值. compute. ...
- (转自精通Python设计模式)Python设计模式之创建型模式——2.建造者模式
建造者模式将一个复杂对象的构造过程与其表现分离,这样,同一个构造过程可用于创建多个不同的表现. 我们来看个实际的例子,假设我们想要创建一个HMTL页面生成器,HTML页面的基本结构(构造组件)通常是一 ...
- 7.30实习培训日志-SQL优化
总结 今天早上考试,下午主要是老师引导我们学习SQL优化,晚上主要是同学的技术分享,杨松柏同学主要给我们分享了java的io的一些东西,c10k问题,bio(同步阻塞IO),NIO(同步非阻塞IO), ...
- Neutron网络研究
你将学到什么 虚拟机的Ping包是如何出外网的 DevStack环境准备 节点 硬件配置 网络配置 类型 操作系统 DevStack 4G 2CPU 50GB 2张网卡(NAT模式) VMWare虚拟 ...