基站选址(base.c/cpp/pas)

题目描述 

N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di。需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci。如果在距离第i个村庄不超过Si的范围内建立了一个通讯基站,那么就成它被覆盖了。如果第i个村庄没有被覆盖,则需要向他们补偿,费用为Wi。现在的问题是,选择基站的位置,使得总费用最小。

输入

输入文件的第一行包含两个整数N,K,含义如上所述。

第二行包含N-1个整数,分别表示D2,D3,…,DN ,这N-1个数是递增的。

第三行包含N个整数,表示C1,C2,…CN

第四行包含N个整数,表示S1,S2,…,SN

第五行包含N个整数,表示W1,W2,…,WN

输出

输出文件中仅包含一个整数,表示最小的总费用。

样例输入


1 2
2 3 2
1 1 0
10 20 30

样例输出

4

提示

40%的数据中,N<=500;

100%的数据中,K<=NK<=100,N<=20,000,Di<=1000000000,Ci<=10000,Si<=1000000000,Wi<=10000。

solution

先列出DP式

f[i][j]表示当前建到i(i必建),已经建了j个的最小代价

f[i][j]=f[k][j-1]+cost(k+1,i-1)+c[i];

效率O(n^3)

因为j只和j-1有关,我们可以先枚举j,对于每一个j,考虑优化cost(k+1,i-1):

令l[i]为最左的能覆盖i的基站的位置,r[i]同理

用线段树存1~i-1  f[k][j-1]+cost(k+1,i-1 ) 的值

处理完i,将要加入i+1时对于r[x]=i的点显然无法被从右边覆盖,那么将1~l[x]-1加上w[x],

也就是如果f[i+1]由f[k]转移来,且k<l[x],那么x就不会被覆盖了,cost要加上w[x].

线段树维护区间加,单点查

效率O(nlogn)

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#define maxn 200005
#define inf 900000000
using namespace std;
int n,k,dp[maxn],d[maxn],c[maxn],s[maxn],w[maxn],lm[maxn],rm[maxn];
int x,tot,head[maxn];
struct node{
int nex,v;
}e[maxn*2];
struct no
{
int l,r,x,bj;
}tree[maxn*4];
void lj(int t1,int t2)
{
e[++tot].v=t2;e[tot].nex=head[t1];head[t1]=tot;
}
void get(int k)
{
int l=1,r=k;
x=d[k];
while(l<r)
{
int mid=(l+r)/2;
if(x-d[mid]<=s[k])r=mid;
else l=mid+1;
}
lm[k]=l;
l=k,r=n;
while(l<r)
{
int mid=(l+r+1)/2;
if(d[mid]-x<=s[k])l=mid;
else r=mid-1;
}
rm[k]=l;
lj(l,k);
}
void wh(int k)
{
tree[k].x=min(tree[k*2].x,tree[k*2+1].x);
}
void build(int k,int L,int R)
{
tree[k].l=L,tree[k].r=R;tree[k].bj=0;
if(L==R){
tree[k].x=dp[L];
return;
}
int mid=(L+R)/2;
build(k*2,L,mid);build(k*2+1,mid+1,R);
wh(k);
}
void down(int k)
{
if(tree[k].bj>0)
{
tree[k*2].bj+=tree[k].bj;tree[k*2+1].bj+=tree[k].bj;
tree[k*2].x+=tree[k].bj;tree[k*2+1].x+=tree[k].bj;
tree[k].bj=0;
}
}
int ask(int k,int L,int R)
{
if(L>R)return 0;
down(k);
if(tree[k].l>=L&&tree[k].r<=R)
{
return tree[k].x;
}
int mid=(tree[k].l+tree[k].r)/2;
int u=inf;
if(L<=mid)u=min(u,ask(k*2,L,R));
if(R>mid)u=min(u,ask(k*2+1,L,R));
return u;
}
void lian(int k,int L,int R,int v)
{
if(L>R)return;
down(k);
if(tree[k].l>=L&&tree[k].r<=R)
{ tree[k].bj+=v;
tree[k].x+=v;
return;
}
int mid=(tree[k].l+tree[k].r)/2;
if(L<=mid)lian(k*2,L,R,v);
if(R>mid)lian(k*2+1,L,R,v);
wh(k);
}
int ss()
{
char ch;int v=0;
while(!isdigit(ch=getchar()));v=v+ch-'0';
while(isdigit(ch=getchar()))v=(v<<1)+(v<<3)+ch-'0';
return v;
}
int main()
{
n=ss();k=ss();
for(int i=2;i<=n;i++)d[i]=ss();
for(int i=1;i<=n;i++)c[i]=ss();
for(int i=1;i<=n;i++)s[i]=ss();
for(int i=1;i<=n;i++)w[i]=ss();
n++;d[n]=inf;
for(int i=1;i<=n;i++)get(i); int tmp=0;
for(int i=1;i<=n;i++){
dp[i]=tmp+c[i];
int p=head[i];
while(p!=0)
{
tmp+=w[e[p].v];
p=e[p].nex;
}
}
int ans=dp[n];
for(int i=2;i<=k+1;i++)
{
build(1,1,n);
for(int j=1;j<=n;j++){ dp[j]=ask(1,1,j-1)+c[j];
int p=head[j];
while(p!=0){
lian(1,1,lm[e[p].v]-1,w[e[p].v]);
p=e[p].nex;
}
}
ans=min(ans,dp[n]);
}
cout<<ans<<endl;
return 0;
}

基站选址(base.c/cpp/pas)的更多相关文章

  1. BZOJ 1835: [ZJOI2010]base 基站选址 [序列DP 线段树]

    1835: [ZJOI2010]base 基站选址 题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立 ...

  2. 【BZOJ1835】[ZJOI2010]base 基站选址 线段树+DP

    [BZOJ1835][ZJOI2010]base 基站选址 Description 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯 ...

  3. [ZJOI2010]基站选址,线段树优化DP

    G. base 基站选址 内存限制:128 MiB 时间限制:2000 ms 标准输入输出 题目类型:传统 评测方式:文本比较   题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离 ...

  4. 【Bzoj 1835 基站选址】

    基站选址的区间里隐藏着DP优化的机密…… 分析:       不论是做过乘积最大还是石子合并,或者是其他的入门级别的区间DP题目的人呐,大米并认为读题后就能够轻松得出一个简洁明了的Dp转移方程.    ...

  5. 【题解】Luogu P2605 [ZJOI2010]基站选址

    原题传送门:P2604 [ZJOI2010]基站选址 看一眼题目,变知道这题一定是dp 设f[i][j]表示在第i个村庄修建第j个基站且不考虑i+1~n个村庄的最小费用 可以得出f[i][j] = M ...

  6. Problem B. Market(market.c/cpp/pas)

    Problem B. Market(market.c/cpp/pas)Time limit: 1 secondsMemory limit: 128 megabytes在比特镇一共有 n 家商店,编号依 ...

  7. 【BZOJ1835】基站选址(线段树)

    [BZOJ1835]基站选址(线段树) 题面 BZOJ 题解 考虑一个比较暴力的\(dp\) 设\(f[i][j]\)表示建了\(i\)个基站,最后一个的位置是\(j\)的最小代价 考虑如何转移\(f ...

  8. 公路建设 (highway.c/cpp/pas)

    2.公路建设 (highway.c/cpp/pas) 在滨海市一共有 n 个城市,编号依次为 1 到 n,它们之间计划修建 m 条双向道路,其中 修建第 i 条道路的费用为 ci. 海霸王作为滨海市公 ...

  9. 商店购物 (shopping.c/cpp/pas)

    1.商店购物 (shopping.c/cpp/pas) 在滨海市开着 n 家商店,编号依次为 1 到 n,其中编号为 1 到 m 的商店有日消费量上 限,第 i 家商店的日消费量上限为 wi. 海霸王 ...

随机推荐

  1. ABAP Table Control

    SAP中,Table Control是在Screen中用的最广泛的控件之一了,可以实现对多行数据的编辑.  简单来说,Table Control是一组屏幕元素在Screen上的重复出现,这就是它与普通 ...

  2. Spring Cloud 入门Eureka -Consumer服务消费(一)

    这里介绍:LoadBalancerClient接口,它是一个负载均衡客户端的抽象定义,下面我们就看看如何使用Spring Cloud提供的负载均衡器客户端接口来实现服务的消费. 引用之前的文章中构建的 ...

  3. js | javascript实现浏览器窗口大小被改变时触发事件的方法

    转载 当浏览器的窗口大小被改变时触发的事件window.onresize 为事件指定代码: 代码如下: window.onresize = function(){ } 例如: 浏览器可见区域信息: 代 ...

  4. 给树莓派Raspbian stretch版本修改软件源

    树莓派最新的系统版本是stretch,试了阿里和网易的软件源都不行,最后试了清华的可以 deb http://mirrors.tuna.tsinghua.edu.cn/raspbian/raspbia ...

  5. 在github上查找star最多的项目

    如何在github上查找star最多的项目 在search中输入stars:>1 就可以查找所有有star的项目,然后右上角根据自己的需要筛选 当我输入stars:>10000的时候,就会 ...

  6. git push 时 fatal: Unable to create 'D:/phpStudy/WWW/green_tree/.git/index.lock': File exists.解决办法

    找到自己的项目,找到.git文件夹,进去把目标文件删除即可 或者使用rm -rf 命令(如果没有那个文件件或者文件,将隐藏文件打开就可以看到了)

  7. JZOJ 5922. sequence

    5922. [NOIP2018模拟10.23]sequence (File IO): input:sequence.in output:sequence.out Time Limits: 1000 m ...

  8. Gson杂记录

    //Integer userId = getUserId(); //System.out.println("userId:"+userId); /*for(int i=0;i< ...

  9. 05,Python网络爬虫之三种数据解析方式

    回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需要进行指定数据 ...

  10. [网站公告]又拍云API故障造成图片无法上传

    大家好,今天早上8:30左右发现又拍云API出现故障,造成图片无法上传,调用图片上传API时出现错误:“The operation has timed out”. 该故障给大家带来了麻烦,望大家谅解! ...