RSA

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1243    Accepted Submission(s): 901

Problem Description
RSA is one of the most powerful methods to encrypt data. The RSA algorithm is described as follow:

> choose two large prime integer p, q
> calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
> choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
> calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key

You can encrypt data with this method :

C = E(m) = me mod n

When you want to decrypt data, use this method :

M = D(c) = cd mod n

Here, c is an integer ASCII value of a letter of cryptograph and m is an integer ASCII value of a letter of plain text.

Now given p, q, e and some cryptograph, your task is to "translate" the cryptograph into plain text.

 
Input
Each case will begin with four integers p, q, e, l followed by a line of cryptograph. The integers p, q, e, l will be in the range of 32-bit integer. The cryptograph consists of l integers separated by blanks. 
 
Output
For each case, output the plain text in a single line. You may assume that the correct result of plain text are visual ASCII letters, you should output them as visualable letters with no blank between them.
 
Sample Input
101 103 7 11
7716 7746 7497 126 8486 4708 7746 623 7298 7357 3239
 
Sample Output
I-LOVE-ACM.
 
Author
JGShining(极光炫影)
 
Source
 
Recommend
Eddy   |   We have carefully selected several similar problems for you:  1299 1695 1573 1213 1576 
 
 //0MS    236K    1318 B    G++
/* 题意:
RSA密码加解密法的解密 模拟题:
可以算水题,不过也磨了挺久,一是逆元求法不明确,
二是O(lgn)的n次方模数算法忘了,三是没注意64位,
还有电脑有点卡!!郁闷 */
#include<stdio.h>
#include<string.h>
/***************************************
函数:ExGcd
功能:求两个数的最大公约数和模P的乘法逆元。
输入:a,b 输入参数,求这两个数的最大公约数
和a模b的逆元 或 b模a的逆元。
输出:x,y 分别表示a模b的逆元和b模a的逆元。
返回:r 表示a b 的最大公约数。
*************************************/
__int64 Exgcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
if(b==){
x=;
y=;
return a;
}
__int64 r=Exgcd(b,a%b,x,y);
__int64 t=x;
x=y;
y=t-a/b*y;
return r;
}
__int64 fac(__int64 a,__int64 d,__int64 n)
{
a%=n;
int t=;
while(d){
if(d%) t=(t*a)%n;
a=(a*a)%n;
d/=;
}
return t;
}
int main(void)
{
__int64 p,q,e;
__int64 l,a;
while(scanf("%I64d%I64d%I64d%I64d",&p,&q,&e,&l)!=EOF)
{
char c[];
memset(c,,sizeof(c));
__int64 d1=,d2=;
__int64 n=p*q;
Exgcd(e,(p-)*(q-),d1,d2);
d1=(d1+(p-)*(q-))%((p-)*(q-));
//printf("%d %d",d1,d2);
for(int i=;i<l;i++){
scanf("%I64d",&a);
a=fac(a,d1,n);
int b=a;
c[i]=b;
//printf("%d %d %c\n",a,c[i],c[i]);
}
puts(c);
}
return ;
}

hdu 1211 RSA (逆元)的更多相关文章

  1. hdu 1211 RSA

    // 表示题目意思我是理解了蛮久 英语太水了 //首先这是解密公式 m=c^d mod n// 给你 p q e 然后 n=p*q fn=(p-1)*(q-1)// 给你 e,根据公式 e*d mod ...

  2. HDU 1211 EXGCD

    EXGCD的模板水题 RSA算法给你两个大素数p,q定义n=pq,F(n)=(p-1)(q-1) 找一个数e 使得(e⊥F(n)) 实际题目会给你e,p,q计算d,$de \mod F(n) = 1$ ...

  3. hdu 1211 逆元

    RSA Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  4. HDU 1576 (乘法逆元)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思 ...

  5. HDU 5651 组合+逆元

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5651 题目意思我看了半天没读懂,一直以为是回文子串又没看见substring的单词最后看博客才知道是用给 ...

  6. hdu 1576 求逆元

    题意:给出n=A mod 9973和B,求(A/B) mod 9973 昨天用扩展欧几里得做过这题,其实用逆元也可以做. 逆元的定义:例如a*b≡1 (mod m),则b就是a关于m的逆元. 求逆元方 ...

  7. HDU 1211

    水.模拟即可.使用EXGCD求逆元 #include <iostream> #include <cstdio> #include <cstring> #includ ...

  8. HDU 5976 数学,逆元

    1.HDU 5976 Detachment 2.题意:给一个正整数x,把x拆分成多个正整数的和,这些数不能有重复,要使这些数的积尽可能的大,输出积. 3.总结:首先我们要把数拆得尽可能小,这样积才会更 ...

  9. HDU 5651 计算回文串个数问题(有重复的全排列、乘法逆元、费马小定理)

    原题: http://acm.hdu.edu.cn/showproblem.php?pid=5651 很容易看出来的是,如果一个字符串中,多于一个字母出现奇数次,则该字符串无法形成回文串,因为不能删减 ...

随机推荐

  1. Java开发.gitignore文件包含.iml,.log的看法

    有一个开源项目https://github.com/github/gitignore 主要用来规范所有开发项目的.gitignore文件的编写,基本涵盖了所有的开发语言.开发环境等.今日我向JetBr ...

  2. base64位 解码图片

    jar包是commons-codec.jar. pnuts //base64解码成图片 function gldBase64ToImage(imgStr,imgFilePath) { // 对字节数组 ...

  3. Data Warehouse 简介

    数据仓库定义 数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受:数据仓库(Data Warehouse)是一个面 ...

  4. Vue 前端md5加密

    用户注册时将加密后的密码发送给后端存储 当登陆的时候,再将加密后的密码和数据库中加密的密码相匹配. npm: https://www.npmjs.com/package/crypto-browseri ...

  5. 在ubuntu中docker的简单使用(一)

    >>docker version 当运行docker version 命令出现Cannot connect to Docker daemon. Is the docker daemon r ...

  6. 关于使用js下载图片

    使用js进行图片下载是很常见的需求,但是解决起来却不是那么顺利. 服务器返回了一个图片地址,网上一搜基本都是用a标签的download属性,但是兼容性实在是很差.这里推荐使用blob. 上代码: va ...

  7. Map the Debris -freecodecamp算法题目

    Map the Debris 1.要求 返回一个数组,其内容是把原数组中对应元素的平均海拔转换成其对应的轨道周期. 原数组中会包含格式化的对象内容,像这样 {name: 'name', avgAlt: ...

  8. 浅谈MySQL字符集

      Preface       MySQL use character set & collation to organize the different charater.It provid ...

  9. ES6笔记02-箭头函数

    eg1:// ES5 匿名函数 var total = values.reduce(function (a, b) { return a + b; }, 0); // ES6 匿名函数 var tot ...

  10. 【c学习-2】

    #include <stdio.h> #define MYVAR 18 int main(){ //float x=3.14; //x=3.14++; //printf("%c\ ...