假如你有 $1$ 块钱, 存银行, 利率为 $100\%$, 那么一年后本息和为
$$1+1=2.$$

如果你换种存法, 存半年, 把本息和取出来, 再存半年, 那么一年后本息和为
$$\left(1+\frac{1}{2}\right)^2=\frac{9}{4}=2.25.$$

如果以四个月为一期存款, 到期后把本息和取出来, 再存下一期, 那么一年后本息和为
$$\left(1+\frac{1}{3}\right)^3=\frac{64}{27}\approx2.37.$$

你会发现, 你存款的期数越多, 一年后的本息和越大. 自然地, 你会想问两个问题?

(1) 是不是随着期数增多, 本息和也相应增大?

(2) 是不是只要期数足够多, 一年后的本息和要多大有多大?

先来回答第二个问题.

(命题1) 对任何正整数 $n$,
$$\left(1+\frac{1}{n}\right)^n<3.$$

证明. 由二项式定理,

\begin{align*}
\left(1+\frac{1}{n}\right)^n&=\sum_{k=0}^nC_n^k\frac{1}{n^k}\\
&=1+\sum_{k=1}^n\frac{n(n-1)\cdots(n-k+1)}{k!n^k}\\
&\leq1+\sum_{k=1}^n\frac{1}{k!}\\
&\leq2+\sum_{k=2}^n\frac{1}{k(k-1)}\\
&<3.
\end{align*}

这样就回答了第二个问题, 对任何大的期数, 本息和是不会超过 $3$ 的.

下面来回答第一个问题.

(命题2) 对任何正整数 $n$,
$$\left(1+\frac{1}{n}\right)^n<\left(1+\frac{1}{n+1}\right)^{n+1}.$$

证明. 由二项式定理,
\begin{align*}
\left(1+\frac{1}{n}\right)^n&=\sum_{k=0}^nC_n^k\frac{1}{n^k}\\
&=1+\sum_{k=1}^n\frac{1}{k!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{k-1}{n}\right).
\end{align*}
所以
\begin{align*}
\left(1+\frac{1}{n+1}\right)^{n+1}&=1+\sum_{k=1}^{n+1}\frac{1}{k!}\left(1-\frac{1}{n+1}\right)\cdots\left(1-\frac{k-1}{n+1}\right)\\
&>1+\sum_{k=1}^{n}\frac{1}{k!}\left(1-\frac{1}{n+1}\right)\cdots\left(1-\frac{k-1}{n+1}\right)\\
&\geq1+\sum_{k=1}^n\frac{1}{k!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{k-1}{n}\right)\\
&=\left(1+\frac{1}{n}\right)^n.
\end{align*}

这样, 由单调有界定理,
$$\left\{\left(1+\frac{1}{n}\right)^n\right\}_{n\geq1}$$
的极限存在, 记
$$e=\lim_{n\rightarrow\infty}\left(1+\frac{1}{n}\right)^n.$$

一个很自然的问题是, $e$ 是否是有理数? 这个暂且按下不表, 留待以后分解.

关于底数为 $e$ 的对数通常记作 $\ln$ 或者 $\log$:
$$\log_ex=\log x=\ln x.$$

第五回. $e$ 的引入的更多相关文章

  1. vue-cli引入jquery方法

    方法一: 一,在package.json里加入, dependencies:{ ”jquery“:”^2.3.4“ } 二,在webpack.base.conf.js里加入 const webpack ...

  2. 2016/04/26 权限 数据库mydb2 五个表 分别是 1,用户 2,角色 3,权限 4,用户对应的角色 5,角色对应的权限

    权限:   1,后台分配角色     角色对应权限    2,各用户通过登录页面登录    查看到各自的权限 五个页面   加引入一个jquery-1.11.2.min.js 1,guanli.php ...

  3. angular4(2-1)angular脚手架引入第三方类库(jquery)

    欢迎加入前端交流群交流知识&&获取视频资料:749539640 如何在angular4脚手架中引入第三方类库呢比如jquery.swiper.bootstrap...... 例如引入j ...

  4. Day46(列表标签,表格标签,表单标签,css的引入方式,css选择器)

    一.列表标签 列表标签分为三种. 1.无序列表<ul>,无序列表中的每一项是<li> 英文单词解释如下: ul:unordered list,“无序列表”的意思. li:lis ...

  5. Vue cli4 图片地址引入的几种方式

    五种图片地址引入方式 @开头,它也会作为一个模块请求被解析.它的用处在于Vue CLI默认会设置一个指向项目根目录/src的别名@

  6. iOS开发之ReactiveCocoa下的MVVM(干货分享)

    最近工作比较忙,但还是出来更新博客了,今天给大家分享一些ReactiveCocoa以及MVVM的一些东西,干活还是比较足的.在之前发表过一篇博文,名字叫做<iOS开发之浅谈MVVM的架构设计与团 ...

  7. RPC学习----Thrift快速入门和Java简单示例

    一.什么是RPC? RPC(Remote Procedure Call Protocol)——远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议. RPC协议 ...

  8. ios开发入门篇(二):Objective-C的简单语法介绍

    一:面向对象的思想 objective-c与C语言的编程思想不同,C语言是面向过程的编程,而objective-c则是面向对象的编程,所谓面向对象,我个人的理解,就是抽象.将具有一定共同点的实物抽象成 ...

  9. Quartz2.2.1操作手册

    一.初识quartz JobDetail job = newJob(HelloJob.class).withIdentity("job1", "group1") ...

随机推荐

  1. 在xilinxFPGA上使用microblaze及自写GPIO中断

    很久很久没有更新过博客了,今天来扒一扒FPGA上CPU软核的使用. 主要完成的功能:使用的开发板是nexys 4 DDR,板上有16个switch以及16个LED,需要完成microblaze对led ...

  2. background-size拉伸背景图片

    在制作页面中常需要对背景图片在容器中进行平铺,可用background-size属性对背景编辑:拉伸,压缩等~ background-size:contain; 将背景扩展到整个容器大小. 较为实用的 ...

  3. [转]常用的快速Web原型图设计工具

    转自大神: http://www.cnblogs.com/lhb25/archive/2009/04/25/1443254.html 做产品原型是非常重要的一个环节,做产品原型就会用使用各式各样的工具 ...

  4. Cordova webapp实战开发(20161207 )

    http://www.cnblogs.com/zhoujg/archive/2015/05/28/4534932.html 1.https://www.jetbrains.com/idea/downl ...

  5. Find out files transfered via Bluetooth

    The case was about business secret and forensic guy did a physical acquisition from a smart phone. H ...

  6. jdk1.7和jdk1.8的String的getByte方法的差异

    最近遇到一个奇葩的bug,jdk1.7下正常的程序到了jdk1.8下就不能用了,经过查找原因发现是因为jdk版本升级导致的获取的getbyte时得到的byte数组不同造成的.

  7. 【230】4T硬盘如何完全利用(GPT)

    参考:如何选择超过2T和3T及以上硬盘的MBR与GPT分区形式 新购置的硬盘是 4TB 的,装上后只能用 2TB 的,查明后得知是因为 MBR 只支持 2TB 的(默认情况下是 MBR 分区形式的), ...

  8. scikit-learn实现ebay数据分析 的随笔

    注:只是随笔 import pandas as pd train = pd.read_csv()  读入scv格式的文件 train = train_set.drop(['EbayID','Quant ...

  9. UML大战需求分析阅读笔记3

    UML各种图的中文译名,因为翻译的原因可能会有所不一样,如:Sequence Diagram和Timing Diagram有时候都会被译成"时序图",这是最让人困扰的地方!Sequ ...

  10. 三表联查,这是我目前写过的最长的sql语句,嗯嗯,果然遇到问题才能让我更快成长,更复杂的语句也有了一些心得了

    select sum(amount),sum(card_number) from sy_user inner join sy_admin on sy_user.customer_id=sy_admin ...