第五回. $e$ 的引入
假如你有 $1$ 块钱, 存银行, 利率为 $100\%$, 那么一年后本息和为
$$1+1=2.$$
如果你换种存法, 存半年, 把本息和取出来, 再存半年, 那么一年后本息和为
$$\left(1+\frac{1}{2}\right)^2=\frac{9}{4}=2.25.$$
如果以四个月为一期存款, 到期后把本息和取出来, 再存下一期, 那么一年后本息和为
$$\left(1+\frac{1}{3}\right)^3=\frac{64}{27}\approx2.37.$$
你会发现, 你存款的期数越多, 一年后的本息和越大. 自然地, 你会想问两个问题?
(1) 是不是随着期数增多, 本息和也相应增大?
(2) 是不是只要期数足够多, 一年后的本息和要多大有多大?
先来回答第二个问题.
(命题1) 对任何正整数 $n$,
$$\left(1+\frac{1}{n}\right)^n<3.$$
证明. 由二项式定理,
\begin{align*}
\left(1+\frac{1}{n}\right)^n&=\sum_{k=0}^nC_n^k\frac{1}{n^k}\\
&=1+\sum_{k=1}^n\frac{n(n-1)\cdots(n-k+1)}{k!n^k}\\
&\leq1+\sum_{k=1}^n\frac{1}{k!}\\
&\leq2+\sum_{k=2}^n\frac{1}{k(k-1)}\\
&<3.
\end{align*}
这样就回答了第二个问题, 对任何大的期数, 本息和是不会超过 $3$ 的.
下面来回答第一个问题.
(命题2) 对任何正整数 $n$,
$$\left(1+\frac{1}{n}\right)^n<\left(1+\frac{1}{n+1}\right)^{n+1}.$$
证明. 由二项式定理,
\begin{align*}
\left(1+\frac{1}{n}\right)^n&=\sum_{k=0}^nC_n^k\frac{1}{n^k}\\
&=1+\sum_{k=1}^n\frac{1}{k!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{k-1}{n}\right).
\end{align*}
所以
\begin{align*}
\left(1+\frac{1}{n+1}\right)^{n+1}&=1+\sum_{k=1}^{n+1}\frac{1}{k!}\left(1-\frac{1}{n+1}\right)\cdots\left(1-\frac{k-1}{n+1}\right)\\
&>1+\sum_{k=1}^{n}\frac{1}{k!}\left(1-\frac{1}{n+1}\right)\cdots\left(1-\frac{k-1}{n+1}\right)\\
&\geq1+\sum_{k=1}^n\frac{1}{k!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{k-1}{n}\right)\\
&=\left(1+\frac{1}{n}\right)^n.
\end{align*}
这样, 由单调有界定理,
$$\left\{\left(1+\frac{1}{n}\right)^n\right\}_{n\geq1}$$
的极限存在, 记
$$e=\lim_{n\rightarrow\infty}\left(1+\frac{1}{n}\right)^n.$$
一个很自然的问题是, $e$ 是否是有理数? 这个暂且按下不表, 留待以后分解.
关于底数为 $e$ 的对数通常记作 $\ln$ 或者 $\log$:
$$\log_ex=\log x=\ln x.$$
第五回. $e$ 的引入的更多相关文章
- vue-cli引入jquery方法
方法一: 一,在package.json里加入, dependencies:{ ”jquery“:”^2.3.4“ } 二,在webpack.base.conf.js里加入 const webpack ...
- 2016/04/26 权限 数据库mydb2 五个表 分别是 1,用户 2,角色 3,权限 4,用户对应的角色 5,角色对应的权限
权限: 1,后台分配角色 角色对应权限 2,各用户通过登录页面登录 查看到各自的权限 五个页面 加引入一个jquery-1.11.2.min.js 1,guanli.php ...
- angular4(2-1)angular脚手架引入第三方类库(jquery)
欢迎加入前端交流群交流知识&&获取视频资料:749539640 如何在angular4脚手架中引入第三方类库呢比如jquery.swiper.bootstrap...... 例如引入j ...
- Day46(列表标签,表格标签,表单标签,css的引入方式,css选择器)
一.列表标签 列表标签分为三种. 1.无序列表<ul>,无序列表中的每一项是<li> 英文单词解释如下: ul:unordered list,“无序列表”的意思. li:lis ...
- Vue cli4 图片地址引入的几种方式
五种图片地址引入方式 @开头,它也会作为一个模块请求被解析.它的用处在于Vue CLI默认会设置一个指向项目根目录/src的别名@
- iOS开发之ReactiveCocoa下的MVVM(干货分享)
最近工作比较忙,但还是出来更新博客了,今天给大家分享一些ReactiveCocoa以及MVVM的一些东西,干活还是比较足的.在之前发表过一篇博文,名字叫做<iOS开发之浅谈MVVM的架构设计与团 ...
- RPC学习----Thrift快速入门和Java简单示例
一.什么是RPC? RPC(Remote Procedure Call Protocol)——远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议. RPC协议 ...
- ios开发入门篇(二):Objective-C的简单语法介绍
一:面向对象的思想 objective-c与C语言的编程思想不同,C语言是面向过程的编程,而objective-c则是面向对象的编程,所谓面向对象,我个人的理解,就是抽象.将具有一定共同点的实物抽象成 ...
- Quartz2.2.1操作手册
一.初识quartz JobDetail job = newJob(HelloJob.class).withIdentity("job1", "group1") ...
随机推荐
- C#操作access数据库
未在本地计算机上注册“microsoft.ACE.oledb.12.0”提供程序解决办法 去http://download.microsoft.com/download/7/0/3/703ffbcb- ...
- 应用Druid监控SQL语句的执行情况
Druid是什么? Druid首先是一个数据库连接池.Druid是目前最好的数据库连接池,在功能.性能.扩展性方面,都超过其他数据库连接池,包括DBCP.C3P0.BoneCP.Proxool.JBo ...
- 4、C#进阶:MD5加密、进程、线程、GDI+、XML、委托
MD5加密 将字符串进行加密,无法解密.网上的解密方式也都是在库里找,找不到也没有. 1 protected void Page_Load(object sender, EventArgs e) 2 ...
- 填坑*** WARNING L15: MULTIPLE CALL TO SEGMENT
填坑*** WARNING L15: MULTIPLE CALL TO SEGMENT 警告:发生了重入! 解释:在主循环里调用了一个函数,而在中断服务中又一次调用了同样的函数.当主循环运行到该函数中 ...
- 矩阵乘法的MapReduce实现
对于任意矩阵M和N,若矩阵M的列数等于矩阵N的行数,则记M和N的乘积为P=M*N,其中mik 记做矩阵M的第i行和第k列,nkj记做矩阵N的第k行和第j列,则矩阵P中,第i行第j列的元素可表示为公式( ...
- java网络流传输,中文乱码问题。
最近需要从某个网页上抓取数据.一波三折. 1. 先要找到网站页面调用后台数据服务的url地址,但是本人对js不了解,花了不少时间在分析其网页源代码的js部分,试图寻找出调用数据的链接. 后来得知浏览器 ...
- oracle 触发器学习
触发器使用教程和命名规范 目 录触发器使用教程和命名规范 11,触发器简介 12,触发器示例 23,触发器语法和功能 34,例一:行级触发器之一 45,例二:行级触发器之二 46,例三:INSTEA ...
- [MAC]用beamoff给VMware的Mac OS X 10.10.x加速
MAC OS X 10.10.x Yosemite在VMWare中实在是太慢了,卡出翔!好在高人多,请装beamoff!详见:https://github.com/JasF/beamoff.git C ...
- 01HTTP服务&AJAX编程
HTTP服务&AJAX编程 一.服务器 1. 什么是服务器? 能够提供某种服务的机器(计算机)称为服务器. 2.服务器的分类: 1.按系统分类:Lin ...
- javascript 零星知识点
通过js动态生成的元素绑定事件.不能通过js获取元素对象,并赋予事件,最简捷的途径就是将事件直接添加到属性中(DOM0);