Validate BST是指按中序遍历niorder后左<node<右;

第一种方法: 先按inoreder遍历, 再放进ArrayList里用循环看是不是从小到大排序;

注意: 设置成员变量list时,如果先new作ArrayList, 则在main函数里每次用都得new个新的class对象;

如果不想在main里每次都new, 则在判断valid的函数里再new作ArrayList, 这样就每次用这个函数时都会自己new了;

(因为list特性的add功能会被不停地加, 而不是自身清空再加, 所以每次对不同的新对象时要先new)

/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
public class Solution {
public List<Integer> list;
public void inorder(TreeNode root){
if(root == null) return; inorder(root.left);
list.add(root.val);
inorder(root.right); } /**
* @param root: The root of binary tree.
* @return: True if the binary tree is BST, or false
*/
public boolean isValidBST(TreeNode root) {
list = new ArrayList<Integer>(); inorder(root);
for(int i = 0; i < list.size()- 1; i++){
if(list.get(i) >= list.get(i+1)) return false;
}
return true;
// write your code here
} }

第二种方法: 用自身递归, 看node节点的范围是不是: 左<node<右, 再对接着的左节点及右节点作为node来判断, 以此进行下去;

注意: 一个参数的函数里用个有三个参数的函数来体现实质是使用有三个参数的函数, 另外再对这有三参数的函数定义;

/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
public class Solution { public boolean isValidBST(TreeNode root) {
return isValidBST(root, null, null);
// write your code here
}
public boolean isValidBST(TreeNode root, Integer min, Integer max){
if(root == null) return true; if((min != null && root.val <= min) || (max != null && root.val >= max)) return false; if(!isValidBST(root.left, min, root.val) || !isValidBST(root.right, root.val, max)) return false; return true;
}
}

CCI4.5/LintCode Validate Binary Search Tree的更多相关文章

  1. LintCode Validate Binary Search Tree

    Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...

  2. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

  3. Validate Binary Search Tree

    Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...

  4. 【leetcode】Validate Binary Search Tree

    Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...

  5. 39. Recover Binary Search Tree && Validate Binary Search Tree

    Recover Binary Search Tree OJ: https://oj.leetcode.com/problems/recover-binary-search-tree/ Two elem ...

  6. [CareerCup] 4.5 Validate Binary Search Tree 验证二叉搜索树

    4.5 Implement a function to check if a binary tree is a binary search tree. LeetCode上的原题,请参见我之前的博客Va ...

  7. 【LeetCode练习题】Validate Binary Search Tree

    Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...

  8. leetcode dfs Validate Binary Search Tree

    Validate Binary Search Tree Total Accepted: 23828 Total Submissions: 91943My Submissions Given a bin ...

  9. LeetCode: Validate Binary Search Tree 解题报告

    Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...

随机推荐

  1. 关于springMVC3.0基于注解方式的项目搭建

    前言:开发了几个月的AS3项目,感觉JAVA都用不太熟练了.刚好这几个抽的空,就把自己以前用过的Spring框架再搭一边, 并完整的记录下来 开发环境:tomcat + mysql+ java 1.所 ...

  2. 大不了高三艹个FZU

    即使做错了也不要紧啊,反正人生就这一次

  3. Single-page app(SPA)

    有哪些值得推荐的一页式网站(Single-page app)? http://pro.weltrade.com/en/ 最近开到一下国外网站,一页到底,感觉很高大上,到底是怎么做出来的呢?技术要点是什 ...

  4. Spring(4)

    Spring的Bean的配置形式 1.基于XML的形式(无需讲解) 2.基于注解的形式(需要引入AOP的jar包,此jar包实现了AOP的注解) 当在Spring配置文件中引入类扫描注解命名空间并且指 ...

  5. 移除project,testsuite,testcase级别所有的custom properties

    // Remove all custom properties on Project level. If removed, custom properties cannnot be injected ...

  6. 在IIS Express中调试时无法读取配置文件 错误

    在IIS Express中调试代码时,如果出现"无法读取配置文件"的问题(如图),这种情况是IIS Express的"applicationhost.config&quo ...

  7. Apache Tomcat开机后台启动

    作为软件开发人员,经常接触Tomcat,完成的项目,需要部署到服务器上的Tomcat,才能供其他人访问浏览. 因为存在以下问题,所以需要把Tomcat设置为后台自动启动: 1.服务器可能因环境故障面临 ...

  8. 3dsMax用到的网格优化

    3dsMax软件主要是用于建模的,里面有一个网格优化的功能,它的网格优化的过程是基于那个网格简化算法,经过使用个人认为是基于几何删除的折叠方式来进行的,可能是边折叠或者三角折叠的方式,还望大神多多指教 ...

  9. window10的优缺点

    windows10的体验随笔 为了体验科技前沿,前段时间升级了windows10 优点: 首先换了windows10就回不去了,   1.开始菜单的回归是众向所归,而且也加了迷你的一些菜单元素,值得称 ...

  10. Lucky 2048 - The secret of being lucky

    Lucky 2048 uses a normal distribution to create "lucky" start. Generally speaking, it prov ...