KNN近邻算法
K近邻(KNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。
-- 邻近算法 百度百科
KNN近邻算法思想
根据上文 K-means 算法分类,可以将一堆 毫无次序
的样本分成N个簇,如下:
上图中红色代表一个分簇,绿色代表另一个分簇,这两个簇现在可以称呼为 训练样本
,现在突然出现了一个 黄色的四边形 ,如下:
该 黄色的四边形 现在还不知道属于哪一个分簇。选取 黄色的四边形 周围的 K个点
(K一定要是奇数):
- 当K=3时,直观看出 黄色的四边形 周围的3个点为:K、M、U,就可以判断 黄色的四边形 属于红色簇
- 当K=4时,直观看出 黄色的四边形 周围的3个点为:K、M、U、W,无法判断 黄色的四边形 属于哪个簇,因此不能为偶数
- 当K=5时,直观看出 黄色的四边形 周围的3个点为:K、M、U、W、Z,就可以判断 黄色的四边形 属于绿色簇
KNN近邻算法就是以一定量的训练样本,来对其他未知样本进行分类,分类的标准和选取的K值有很大关系
KNN近邻算法实现
假设训练样本为:
clusters = {
'cluster2': {'H': {'y': 25, 'x': 27}, 'F': {'y': 30, 'x': 36}, 'G': {'y': 14, 'x': 31}, 'A': {'y': 34, 'x': 24},
'D': {'y': 33, 'x': 25}, 'I': {'y': 11, 'x': 28}, 'C': {'y': 23, 'x': 26}, 'E': {'y': 23, 'x': 38},
'B': {'y': 23, 'x': 6}, 'L': {'y': 15, 'x': 7}, 'K': {'y': 25, 'x': 17}, 'M': {'y': 39, 'x': 24},
'J': {'y': 26, 'x': 21}},
'cluster1': {'R': {'y': 97, 'x': 80}, 'N': {'y': 82, 'x': 99}, 'U': {'y': 81, 'x': 95}, 'V': {'y': 88, 'x': 79},
'O': {'y': 85, 'x': 73}, 'Y': {'y': 99, 'x': 87}, 'X': {'y': 72, 'x': 88},
'Q': {'y': 84, 'x': 100}, 'T': {'y': 70, 'x': 84}, 'W': {'y': 100, 'x': 89},
'S': {'y': 67, 'x': 86}, 'Z': {'y': 97, 'x': 66}, 'P': {'y': 88, 'x': 62}}}
随机生成一个point:
# 随机生成一个点
def buildpoint():
temp = {}
x = random.randint(0, 100)
y = random.randint(0, 100)
temp["x"] = x
temp["y"] = y
return temp
分别计算计算这个point与26个字母的 欧氏距离
# 取得point与K个值的距离
def classify(K, clusters, point):
dict = {}
distan = {}
for cluster in clusters:
for key in clusters[cluster].keys():
distan[key] = distance(clusters[cluster][key]["x"], point["x"], clusters[cluster][key]["y"], point["y"])
# reverse=False值按照从小到大排序
distan = sorted(distan.items(), key=lambda d: d[1], reverse=False)
for i in range(K):
key = distan[i][0]
value = distan[i][1]
dict[key] = value
return dict
返回的距离 distan
为:
# [('E', 21.02379604162864), ('F', 21.095023109728988), ('H', 30.805843601498726), ('G', 31.622776601683793), ('D', 32.01562118716424), ('C', 32.28002478313795), ('A', 33.06055050963308), ('M', 33.734255586866), ('I', 35.805027579936315), ('J', 36.49657518178932), ('K', 40.607881008493905), ('S', 45.45327270945405), ('T', 46.61544808322666), ('X', 50.60632371551998), ('B', 51.78802950489621), ('L', 52.81098370604357), ('O', 55.362442142665635), ('P', 56.22277118748239), ('V', 60.166435825965294), ('U', 62.00806399170998), ('N', 65.29931086925804), ('Z', 65.62011886609167), ('Q', 67.47592163134935), ('R', 68.9492567037528), ('Y', 73.40980860893181), ('W', 75.15317691222374)]
因为本文选取的 K=3
,所以返回了距离point最近的3个点:
# {'U': 30.805843601498726, 'M': 21.02379604162864, 'K': 21.095023109728988}
最后判断这3个点属于哪个分簇即可:
def judgecluster(dict, clusters):
newdict = {}
for cluster in clusters:
for key in dict.keys():
if key in clusters[cluster]:
if cluster in newdict:
newdict[cluster] += 1
else:
newdict[cluster] = 1
newdict = sorted(newdict.items(), key=lambda d: d[1], reverse=True)
print("Point属于分簇" + str(newdict[0][0]))
print(newdict)
return newdict
返回的结果为:
# [('cluster2', 2), ('cluster1', 1)]
Point属于分簇cluster2
源码在我的博客上面:
KNN近邻算法的更多相关文章
- 机器学习之利用KNN近邻算法预测数据
前半部分是简介, 后半部分是案例 KNN近邻算法: 简单说就是采用测量不同特征值之间的距离方法进行分类(k-Nearest Neighbor,KNN) 优点: 精度高.对异常值不敏感.无数据输入假定 ...
- 机器学习入门KNN近邻算法(一)
1 机器学习处理流程: 2 机器学习分类: 有监督学习 主要用于决策支持,它利用有标识的历史数据进行训练,以实现对新数据的表示的预测 1 分类 分类计数预测的数据对象是离散的.如短信是否为垃圾短信,用 ...
- 机器学习实战笔记(Python实现)-01-K近邻算法(KNN)
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 基本分类方法——KNN(K近邻)算法
在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...
- 机器学习之K近邻算法(KNN)
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...
- class-k近邻算法kNN
1 k近邻算法2 模型2.1 距离测量2.2 k值选择2.3 分类决策规则3 kNN的实现--kd树3.1 构造kd树3.2 kd树搜索 1 k近邻算法 k nearest neighbor,k-NN ...
- 机器学习——KNN算法(k近邻算法)
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...
- k近邻算法(KNN)
k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection ...
- 1. K近邻算法(KNN)
1. K近邻算法(KNN) 2. KNN和KdTree算法实现 1. 前言 K近邻法(k-nearest neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用, ...
随机推荐
- Android:Layout_weight的深刻理解
最近写Demo,突然发现了Layout_weight这个属性,发现网上有很多关于这个属性的有意思的讨论,可是找了好多资料都没有找到一个能够说的清楚的,于是自己结合网上资料研究了一下,终于迎刃而解,写出 ...
- 批处理——putCMAC小版本
@ECHO off del telcc.vbs del telcc.bat del ftp1.txt del ftp1.bat @echo off setlocal enabledelayedexpa ...
- ios控制器生命周期详解
#import "MyOneViewController.h" @interface MyOneViewController () @property (nonatomic, st ...
- 兼容解决 IE 、火狐、谷歌浏览器中 Iframe框架的页面缓存的方法
<script type="text/javascript"> document.write('<iframe src="/ad_footer.html ...
- SqlServer性能优化 查询和索引优化(十二)
查询优化的过程: 查询优化: 功能:分析语句后最终生成执行计划 分析:获取操作语句参数 索引选择 Join算法选择 创建测试的表: select * into EmployeeOp from Adve ...
- RadioButtonFor绑定值
<div class="form-group"> <label class="control-label col-md-2">是否< ...
- 救援linux
挂载分区 mount /dev/sdaX /mnt/ 挂载其他 mount --bind /dev/ /mnt/dev/ mount --bind /proc/ /mnt/proc/ mount -- ...
- dynamic_cast 和 static_cast 隐式类型转换的区别
首先回顾一下C++类型转换: C++类型转换分为:隐式类型转换和显式类型转换 第1部分. 隐式类型转换 又称为“标准转换”,包括以下几种情况:1) 算术转换(Arithmetic conversion ...
- GDB调试基本命令
一.列文件清单 list / l 列出产生执行文件的源代码的一部分 //列出 line1 到 line2 行之间的源代码 (gdb) list line1, line2 //输出从上次调用list命令 ...
- 字符编码详解及由来(UNICODE,UTF-8,GBK)[转帖]
相信許多人對字符編碼都不是很了解,透過下文可以清晰的理解各种字符编码方式详解及由来. 一直对字符的各种编码方式懵懵懂懂,什么ANSI.UNICODE.UTF-8.GB2312.GBK.DBCS.UCS ...