在写一次epoll
epoll & select & poll只能处理IO相关的操作,epoll每一个操作必须注册到时间监控机制中,并且还需要进程或者线程进行管理。
多进程/多线程 和epoll相比较
epoll用在大量链接,少处理的项目中;
多线程/多进程用在少量链接,复杂的业务处理。
在QQ中,处理登陆是epoll实现,因为epoll只能处理IO相关操作,所以epoll将登陆数据往后传送进程或线程做后续处理,并且把sql查询向数据库请求数据给数据库,并且高并发是在epoll端解决。
epoll比poll多了高速模式即(边缘触发)
ppc/tpc(多进程/多线程)
小号系统资源,连接数增多,系统的开销增大,每一个链接有一个独立的线程/进程,实时性,连接数不多 一般为几百个
select
采用轮询的方式 并且连接数在1024~2048之间,
epoll
默认模式(水平触发)和poll差不多(除epoll监听的句柄多)连接数为几百万
水平触发:
只要句柄文件有了动作,那么epoll就开始被占用。Nainx中的例子会将数据接受完全。
边缘触发:
当数据接受完成时,epoll开始进行管理。Nginx中的例子会将没接收完的数据在第二个数据到来时,接收。
注:epoll进行管理的句柄增大,效率降低。epoll去掉了ppc/tpc对进程的封装。
在写一次epoll的更多相关文章
- 转一贴,今天实在写累了,也看累了--【Python异步非阻塞IO多路复用Select/Poll/Epoll使用】
下面这篇,原理理解了, 再结合 这一周来的心得体会,整个框架就差不多了... http://www.haiyun.me/archives/1056.html 有许多封装好的异步非阻塞IO多路复用框架, ...
- python网络编程——IO多路复用之epoll
1.内核EPOLL模型讲解 此部分参考http://blog.csdn.net/mango_song/article/details/42643971博文并整理 首先我们来定义流的概念,一个流 ...
- epoll 反应堆
epoll反应堆模型 ================================ 下面代码实现的思想:epoll反应堆模型:( libevent 网络编程开源库 核心思想) . 普通多路IO转接 ...
- epoll模型的et模式和lt模式
http://www.cppblog.com/peakflys/archive/2012/08/26/188344.html 评论区讨论,唐诗! http://www.cnblogs.com/e ...
- epoll 实现回射服务器
epoll是I/O复用模型中相对epoll和select更高效的实现对套接字管理的函数. epoll有两种模式 LT 和 ET 二者的差异在于 level-trigger 模式下只要某个 socket ...
- UNIX网络编程——epoll的 et,lt关注点
epoll模型有两种工作模式,ET和LT两种模式下都有一些细节值得注意,以下是一些思考: 一.ET模式下 Q1:调用accept时,到底TCP完成队列里有多少个已经建立好的连接? 这 ...
- python 网络编程 IO多路复用之epoll
python网络编程——IO多路复用之epoll 1.内核EPOLL模型讲解 此部分参考http://blog.csdn.net/mango_song/article/details/4264 ...
- python--第十天总结(Select/Poll/Epoll使用 )
首先列一下,sellect.poll.epoll三者的区别 select select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select ...
- Python-Select/Poll/Epoll使用
select select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select()返回后,该数组中就绪的文件描述符便会被内核修改标志位,使 ...
随机推荐
- 洛谷:P3809 【模板】后缀排序(后缀数组模板)
P3809 [模板]后缀排序 题目链接:https://www.luogu.org/problemnew/show/P3809 题目背景 这是一道模板题. 题目描述 读入一个长度为 nn 的由大小写英 ...
- 转ajax的jsonp的文章
转:http://justcoding.iteye.com/blog/1366102/ Js是不能跨域请求.出于安全考虑,js设计时不可以跨域. 什么是跨域: 1.域名不同时. 2.域名相同,端口不同 ...
- Nginx配置(一)
下载源码安装包:http://nginx.org 稳定版Nginx 1.6.2 tengine: 2.1.2 1.安装缺少依赖的包: (yum install jemalloc) yum -y ins ...
- [Spark经验一]Spark RDD计算使用的函数里尽量不要使用全局变量
比如RDD里的计算调用了别的组件类里的方法(比如hbase里的put方法),那么序列化时,会将该方法所属的对象的所有变量都序列化的,可能有些根本没有实现序列化导致直接报错.也就是spark的api没有 ...
- 深入探索C++对象模型(一)
再读<深入探索C++对象模型>笔记. 关于对象 C++在加入封装后(只含有数据成员和普通成员函数)的布局成本增加了多少? 答案是并没有增加布局成本.就像C struct一样,memeber ...
- 洛谷 P1976 鸡蛋饼
题目背景 Czyzoiers 都想知道小 x 为什么对鸡蛋饼情有独钟.经过一番逼问,小 x 道出 了实情:因为他喜欢圆. 题目描述 最近小 x 又发现了一个关于圆的有趣的问题:在圆上有2N 个不同的点 ...
- vijos 1071 01背包+输出路径
描述 过年的时候,大人们最喜欢的活动,就是打牌了.xiaomengxian不会打牌,只好坐在一边看着. 这天,正当一群人打牌打得起劲的时候,突然有人喊道:“这副牌少了几张!”众人一数,果然是少了.于是 ...
- 最大公倍数_Greatest Common Divisor
计算最大公倍数 Static int gcd( int a, int b) { int t; while( b>0) { t = b; b = a % b; a = t; } return a; ...
- 【usaco-Liars and Truth Tellers, 2013 Jan真假奶牛】并查集
题解: 原先我看错题了,以为是任意选择k个使得它们不矛盾. 这样的话怎么做呢?我想M^2判断,把它们分成若干个集合,集合里面两两不矛盾这个集合里所有的话就不矛盾了. 但是这样是错的.为什么呢? 每一句 ...
- 【比赛】STSRM 09
第一题 题意:n个点,每个点坐标pi属性ai,从右往左将遇到的点向左ai范围内的点消除,后继续扫描. 现可以在扫描开始前提前消除从右往左任意点,问最少消除数(提前+扫描). n,pi,ai<=1 ...