Problem Statement

In the State of Takahashi in AtCoderian Federation, there are N cities, numbered 1,2,…,NM bidirectional roads connect these cities. The i-th road connects City Ai and City Bi. Every road connects two distinct cities. Also, for any two cities, there is at most one road that directly connects them.

One day, it was decided that the State of Takahashi would be divided into two states, Taka and Hashi. After the division, each city in Takahashi would belong to either Taka or Hashi. It is acceptable for all the cities to belong Taka, or for all the cities to belong Hashi. Here, the following condition should be satisfied:

  • Any two cities in the same state, Taka or Hashi, are directly connected by a road.

Find the minimum possible number of roads whose endpoint cities belong to the same state. If it is impossible to divide the cities into Taka and Hashi so that the condition is satisfied, print -1.

Constraints

  • 2≤N≤700
  • 0≤MN(N−1)⁄2
  • 1≤AiN
  • 1≤BiN
  • AiBi
  • If ij, at least one of the following holds: AiAj and BiBj.
  • If ij, at least one of the following holds: AiBj and BiAj.

Input

Input is given from Standard Input in the following format:

N M
A1 B1
A2 B2
:
AM BM

Output

Print the answer.

Sample Input 1

5 5
1 2
1 3
3 4
3 5
4 5

Sample Output 1

4

For example, if the cities 1,2 belong to Taka and the cities 3,4,5 belong to Hashi, the condition is satisfied. Here, the number of roads whose endpoint cities belong to the same state, is 4.

Sample Input 2

5 1
1 2

Sample Output 2

-1

In this sample, the condition cannot be satisfied regardless of which cities belong to each state.

Sample Input 3

4 3
1 2
1 3
2 3

Sample Output 3

3

Sample Input 4

10 39
7 2
7 1
5 6
5 8
9 10
2 8
8 7
3 10
10 1
8 10
2 3
7 4
3 9
4 10
3 4
6 1
6 7
9 5
9 7
6 9
9 4
4 6
7 5
8 3
2 5
9 2
10 7
8 6
8 9
7 3
5 3
4 5
6 3
2 10
5 10
4 2
6 2
8 4
10 6

Sample Output 4

21

    打ARC的时候都想到模型了。。。但就是没做出来mmp,还是水平差啊QWQ
主要没想到的地方是: 如果把补图二分图染色(不是二分图就无解),每个联通分量挑一类点出来弄到一起一定能凑成最后的一个团。
我也不知道为什么当时没想到QWQ,明明这么简单。。。。
然后直接背包完了更新答案就好了QWQ,怎么看都是一个NOIP题,药丸药丸
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=705; inline int Get(int x){ return x*(x-1)>>1;} int num[3],n,m,ans=1<<30,uu,vv,col[N],now;
bool f[N][N],g[N][N]; bool dfs(int x,int c){
col[x]=c,num[c]++; for(int i=1;i<=n;i++) if(!g[x][i])
if(!col[i]){ if(!dfs(i,3-c)) return 0;}
else if(col[i]==c) return 0; return 1;
} int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d",&uu,&vv),g[uu][vv]=g[vv][uu]=1; f[0][0]=1;
for(int i=1;i<=n;i++) g[i][i]=1; for(int i=1;i<=n;i++) if(!col[i]){
num[1]=num[2]=0;
if(!dfs(i,1)){ puts("-1"); return 0;} now++;
for(int j=0;j<=n;j++) if(f[now-1][j]) f[now][j+num[1]]=f[now][j+num[2]]=1;
} for(int i=0;i<=n;i++) if(f[now][i]) ans=min(ans,Get(i)+Get(n-i)); printf("%d\n",ans);
return 0;
}

  

 

AtCoder - 4162 Independence的更多相关文章

  1. AtCoder Regular Contest 099 (ARC099) E - Independence 二分图

    原文链接https://www.cnblogs.com/zhouzhendong/p/9224878.html 题目传送门 - ARC099 E - Independence 题意 给定一个有 $n$ ...

  2. AtCoder Regular Contest 099

    AtCoder Regular Contest 099 C - Minimization 题意 题意:给出一个n的排列.每次操作可以使一段长度为K的连续子序列变成该序列的最小数.求最少几次使得整个数列 ...

  3. AtCoder Beginner Contest 084 C - Special Trains

    Special Trains Problem Statement A railroad running from west to east in Atcoder Kingdom is now comp ...

  4. HDU 4162 最小表示法

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4162 题意:给定一个只有0-7数字组成的串.现在要由原串构造出一个新串,新串的构造方法:相邻2个位置的数字 ...

  5. 控制反转(IOC: Inverse Of Control) & 依赖注入(DI: Independence Inject)

    举例:在每天的日常生活中,我们离不开水,电,气.在城市化之前,我们每家每户需要自己去搞定这些东西:自己挖水井取水,自己点煤油灯照明,自己上山砍柴做饭.而城市化之后,人们从这些琐事中解放了出来,城市中出 ...

  6. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  7. Independence独立

    Independence refers to the degree to which each test case stands alone. That is, does the success or ...

  8. HDU 4162 Shape Number

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4162 题意: 求给定字符的一阶差分链的最小表示. 题解: 先求一阶差分链,再求一阶差分链的最小表示法 ...

  9. AtCoder Grand Contest 001 C Shorten Diameter 树的直径知识

    链接:http://agc001.contest.atcoder.jp/tasks/agc001_c 题解(官方): We use the following well-known fact abou ...

随机推荐

  1. 关于Solaris系统“mpt_sas”驱动

    1.mpt_sas 驱动源文件所在系统源代码中目录: illumos-soulos/usr/src/uts/common/sys/scsi/adapters/mpt_sas  -- 头文件 illum ...

  2. Python的异常处理机制 -- (转)

    当你的程序中出现异常情况时就需要异常处理.比如当你打开一个不存在的文件时.当你的程序中有一些无效的语句时,Python会提示你有错误存在. 下面是一个拼写错误的例子,print写成了Print.Pyt ...

  3. IOException while loading persisted sessions:

    严重: IOException while loading persisted sessions: java.io.EOFException java.io.EOFException at java. ...

  4. perl6中字符串字母编历

    use v6; my $input = prompt '输入字符串:'; for $input.words -> $word { say $word; } for $input.comb -&g ...

  5. Yii 1.1.17 一、安装、目录结构、视图、控制器、扩展自定义函数

    这几天了解了一下Yii框架,以简单的博客项目实战入门.大致的实现流程做个记录. 一.Yii 安装与环境检测 从 www.yiiframework.com 获取一份Yii的拷贝,解压到 /wwwroot ...

  6. 内存分配器memblock【转】

    转自:http://blog.csdn.net/kickxxx/article/details/54710243 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 背景 Data ...

  7. saltstack安装和配置

    [root@web9 salt]# vi filetest.sls //ADD file_test: file.managed: - name: /tmp/lulu.com - source: sal ...

  8. FineReport——FS

    FR除了能够实现对报表等的二次开发,还能实现对决策系统的操作: FS.Trans.signOut() 退出决策平台系统 FS.tabPane._doCloseTab(FS.tabPane._getSe ...

  9. form表单 datalist 和legend

    <form action="" method="post" > <fieldset> <legend> 表单元素 </ ...

  10. linux命令(2):grep命令

    实例一: a.log文件内容如下: 从 a.log 文件中提取包含“WARNING”或”FATAL”,同时不包含“IGNOR”的行 grep -E 'WARNING|FATAL' a.log | gr ...