分布式实时日志分析解决方案ELK部署架构
一、概述
ELK 已经成为目前最流行的集中式日志解决方案,它主要是由Beats、Logstash、Elasticsearch、Kibana等组件组成,来共同完成实时日志的收集,存储,展示等一站式的解决方案。本文将会介绍ELK常见的架构以及相关问题解决。
1. Filebeat:Filebeat是一款轻量级,占用服务资源非常少的数据收集引擎,它是ELK家族的新成员,可以代替Logstash作为在应用服务器端的日志收集引擎,支持将收集到的数据输出到Kafka,Redis等队列。
2. Logstash:数据收集引擎,相较于Filebeat比较重量级,但它集成了大量的插件,支持丰富的数据源收集,对收集的数据可以过滤,分析,格式化日志格式。
3. Elasticsearch:分布式数据搜索引擎,基于Apache Lucene实现,可集群,提供数据的集中式存储,分析,以及强大的数据搜索和聚合功能。
4. Kibana:数据的可视化平台,通过该web平台可以实时的查看 Elasticsearch 中的相关数据,并提供了丰富的图表统计功能。
二、ELK常见部署架构
2.1 Logstash作为日志收集器
这种架构是比较原始的部署架构,在各应用服务器端分别部署一个Logstash组件,作为日志收集器,然后将Logstash收集到的数据过滤、分析、格式化处理后发送至Elasticsearch存储,最后使用Kibana进行可视化展示,这种架构不足的是:Logstash比较耗服务器资源,所以会增加应用服务器端的负载压力。
2.2 Filebeat作为日志收集器
该架构与第一种架构唯一不同的是:应用端日志收集器换成了Filebeat,Filebeat轻量,占用服务器资源少,所以使用Filebeat作为应用服务器端的日志收集器,一般Filebeat会配合Logstash一起使用,这种部署方式也是目前最常用的架构。
2.3 引入缓存队列的部署架构
该架构在第二种架构的基础上引入了Kafka消息队列(还可以是其他消息队列),将Filebeat收集到的数据发送至Kafka,然后在通过Logstasth读取Kafka中的数据,这种架构主要是解决大数据量下的日志收集方案,使用缓存队列主要是解决数据安全与均衡Logstash与Elasticsearch负载压力。
2.4 以上三种架构的总结
第一种部署架构由于资源占用问题,现已很少使用,目前使用最多的是第二种部署架构,至于第三种部署架构个人觉得没有必要引入消息队列,除非有其他需求,因为在数据量较大的情况下,Filebeat 使用压力敏感协议向 Logstash 或 Elasticsearch 发送数据。如果 Logstash 正在繁忙地处理数据,它会告知 Filebeat 减慢读取速度。拥塞解决后,Filebeat 将恢复初始速度并继续发送数据。
三、问题及解决方案
问题:如何实现日志的多行合并功能?
系统应用中的日志一般都是以特定格式进行打印的,属于同一条日志的数据可能分多行进行打印,那么在使用ELK收集日志的时候就需要将属于同一条日志的多行数据进行合并。
解决方案:使用Filebeat或Logstash中的multiline多行合并插件来实现
在使用multiline多行合并插件的时候需要注意,不同的ELK部署架构可能multiline的使用方式也不同,如果是本文的第一种部署架构,那么multiline需要在Logstash中配置使用,如果是第二种部署架构,那么multiline需要在Filebeat中配置使用,无需再在Logstash中配置multiline。
1、multiline在Filebeat中的配置方式:
filebeat.prospectors:
-
paths:
- /home/project/elk/logs/test.log
input_type: log
multiline:
pattern: '^\['
negate: true
match: after
output:
logstash:
hosts: ["localhost:5044"]
pattern:正则表达式
negate:默认为false,表示匹配pattern的行合并到上一行;true表示不匹配pattern的行合并到上一行
match:after表示合并到上一行的末尾,before表示合并到上一行的行首
如:
pattern: '\['
negate: true
match: after
该配置表示将不匹配pattern模式的行合并到上一行的末尾
2、multiline在Logstash中的配置方式
input {
beats {
port => 5044
}
}filter {
multiline {
pattern => "%{LOGLEVEL}\s*\]"
negate => true
what => "previous"
}
}output {
elasticsearch {
hosts => "localhost:9200"
}
}
(1)Logstash中配置的what属性值为previous,相当于Filebeat中的after,Logstash中配置的what属性值为next,相当于Filebeat中的before。
(2)pattern => "%{LOGLEVEL}\s*\]" 中的LOGLEVEL是Logstash预制的正则匹配模式,预制的还有好多常用的正则匹配模式,详细请看:https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns
问题:如何将Kibana中显示日志的时间字段替换为日志信息中的时间?
默认情况下,我们在Kibana中查看的时间字段与日志信息中的时间不一致,因为默认的时间字段值是日志收集时的当前时间,所以需要将该字段的时间替换为日志信息中的时间。
解决方案:使用grok分词插件与date时间格式化插件来实现
在Logstash的配置文件的过滤器中配置grok分词插件与date时间格式化插件,如:
input {
beats {
port => 5044
}
}filter {
multiline {
pattern => "%{LOGLEVEL}\s*\]\[%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME}\]"
negate => true
what => "previous"
}grok {
match => [ "message" , "(?<customer_time>%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME})" ]
}date {
match => ["customer_time", "yyyyMMdd HH:mm:ss,SSS"] //格式化时间
target => "@timestamp" //替换默认的时间字段
}
}output {
elasticsearch {
hosts => "localhost:9200"
}
}
如要匹配的日志格式为:“[DEBUG][20170811 10:07:31,359][DefaultBeanDefinitionDocumentReader:106] Loading bean definitions”,解析出该日志的时间字段的方式有:
① 通过引入写好的表达式文件,如表达式文件为customer_patterns,内容为:
CUSTOMER_TIME %{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME}
注:内容格式为:[自定义表达式名称] [正则表达式]
然后logstash中就可以这样引用:
filter {
grok {
patterns_dir => ["./customer-patterms/mypatterns"] //引用表达式文件路径
match => [ "message" , "%{CUSTOMER_TIME:customer_time}" ] //使用自定义的grok表达式
}
}
② 以配置项的方式,规则为:(?<自定义表达式名称>正则匹配规则),如:
filter {
grok {
match => [ "message" , "(?<customer_time>%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME})" ]
}
}
问题:如何在Kibana中通过选择不同的系统日志模块来查看数据
一般在Kibana中显示的日志数据混合了来自不同系统模块的数据,那么如何来选择或者过滤只查看指定的系统模块的日志数据?
解决方案:新增标识不同系统模块的字段或根据不同系统模块建ES索引
1、新增标识不同系统模块的字段,然后在Kibana中可以根据该字段来过滤查询不同模块的数据,这里以第二种部署架构讲解,在Filebeat中的配置内容为:
filebeat.prospectors:
-
paths:
- /home/project/elk/logs/account.log
input_type: log
multiline:
pattern: '^\['
negate: true
match: after
fields: //新增log_from字段
log_from: account-
paths:
- /home/project/elk/logs/customer.log
input_type: log
multiline:
pattern: '^\['
negate: true
match: after
fields:
log_from: customer
output:
logstash:
hosts: ["localhost:5044"]
通过新增:log_from字段来标识不同的系统模块日志
2、根据不同的系统模块配置对应的ES索引,然后在Kibana中创建对应的索引模式匹配,即可在页面通过索引模式下拉框选择不同的系统模块数据。
这里以第二种部署架构讲解,分为两步:
① 在Filebeat中的配置内容为:
filebeat.prospectors:
-
paths:
- /home/project/elk/logs/account.log
input_type: log
multiline:
pattern: '^\['
negate: true
match: after
document_type: account-
paths:
- /home/project/elk/logs/customer.log
input_type: log
multiline:
pattern: '^\['
negate: true
match: after
document_type: customer
output:
logstash:
hosts: ["localhost:5044"]
通过document_type来标识不同系统模块
② 修改Logstash中output的配置内容为:
output {
elasticsearch {
hosts => "localhost:9200"
index => "%{type}"
}
}
在output中增加index属性,%{type}表示按不同的document_type值建ES索引
四、总结
本文主要介绍了ELK实时日志分析的三种部署架构,以及不同架构所能解决的问题,这三种架构中第二种部署方式是时下最流行也是最常用的部署方式,最后介绍了ELK作在日志分析中的一些问题与解决方案,说在最后,ELK不仅仅可以用来作为分布式日志数据集中式查询和管理,还可以用来作为项目应用以及服务器资源监控等场景,更多内容请看官网。
出处:https://my.oschina.net/feinik/blog/1580625
分布式实时日志分析解决方案ELK部署架构的更多相关文章
- ELK系列--实时日志分析系统ELK 部署与运行中的问题汇总
前记: 去年测试了ELK,今年测试了Storm,最终因为Storm需要过多开发介入而放弃,选择了ELK.感谢互联网上各路大神,目前总算是正常运行了. logstash+elasticsearch+ki ...
- ELK实时日志分析平台环境部署--完整记录
在日常运维工作中,对于系统和业务日志的处理尤为重要.今天,在这里分享一下自己部署的ELK(+Redis)-开源实时日志分析平台的记录过程(仅依据本人的实际操作为例说明,如有误述,敬请指出)~ ==== ...
- ELK实时日志分析平台环境部署--完整记录(转)
在日常运维工作中,对于系统和业务日志的处理尤为重要.今天,在这里分享一下自己部署的ELK(+Redis)-开源实时日志分析平台的记录过程(仅依据本人的实际操作为例说明,如有误述,敬请指出)~ ==== ...
- ELK实时日志分析平台环境部署
为什么要用到ELK一般我们需要进行日志分析场景是:直接在日志文件中 grep.awk 就可以获得自己想要的信息.但在规模较大的场景中,此方法效率低下,面临问题包括日志量太大如何归档.文本搜索太慢怎么办 ...
- ELK实时日志分析平台环境部署,以及可视化展示
ELK是三个开源软件的缩写,分别表示:Elasticsearch , Logstash, Kibana , 它们都是开源软件.新增了一个FileBeat,它是一个轻量级的日志收集处理工具(Agent) ...
- ELK实时日志分析平台环境部署--完整记录(ElasticSearch+Logstash+Kibana )
https://blog.csdn.net/oLevin/article/details/81020794
- 分布式实时日志处理平台ELK
这三样东西分别作用是:日志收集.索引与搜索.可视化展现 l logstash 这张架构图可以看出logstash只是collect和index的地方,运行时传入一个.conf文件,配置分三部分:in ...
- elk实时日志分析平台部署搭建详细实现过程
原文:http://blog.csdn.net/mchdba/article/details/52132663 1.ELK平台介绍 在搜索ELK资料的时候,发现这篇文章比较好,于是摘抄一小段:以下内容 ...
- asp.net core结合NLog搭建ELK实时日志分析平台
0.整体架构 整体架构目录:ASP.NET Core分布式项目实战-目录 一.介绍ELK 1.说明(此篇ELK采用rpm的方式安装在服务器上)-牛刀小试 承接上一篇文章的内容准备部署ELK来展示asp ...
随机推荐
- VBA练习-打开文件,添加选中项,生成新表
学习VBA,正好给财务制作一个小工具: Sub 打开人员信息表() Dim wb As Workbook, c As Integer Set wb = Workbooks.Open(, True) c ...
- 只有父类的init方法才有创建servletConfig与servletContext的能力
如果重写了父类的init方法 但又没有显示调用父类的init方法 那么子类无法使用servletContext 因为 子类方法没有创建出 servletConfig
- BZOJ 1297 迷路(矩阵快速幂)
很容易想到记忆化搜索的算法. 令dp[n][T]为到达n点时时间为T的路径条数.则dp[n][T]=sigma(dp[i][T-G[i][n]]); 但是空间复杂度为O(n*T),时间复杂度O(n*n ...
- hadoop 使用map将SequenFile里的小文件解压出来
上例中将HDFS里小文件通过mapper压缩到一个文件中,本例将这些小文件解压出来. mapreduce可以按SequenceFile的key进行分片. 1.mapper public class M ...
- 【刷题】BZOJ 4827 [Hnoi2017]礼物
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- [BZOJ4589]Hard Nim
description BZOJ 题意:\(n\)堆式子,每堆石子数量为\(\le m\)的质数,对于每一个局面玩\(Nim\)游戏,求后手必胜的方案数. data range \[n\le 10^9 ...
- 在Windows*上编译Tensorflow教程
背景介绍 最简单的 Tensorflow 的安装方法是在 pip 一键式安装官方预编译好的包 pip install tensorflow 通常这种预编译的包的编译参数选择是为了最大兼容性而不是为了最 ...
- BZOJ5217:[Lydsy2017省队十连测]航海舰队——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5217 Byteasar 组建了一支舰队!他们现在正在海洋上航行着.海洋可以抽象成一张n×m 的网格 ...
- 简述JavaScript的类与对象
JavaScript语言是动态类型的语言,基于对象并由事件驱动.用面向对象的思想来看,它也有类的概念.JavaScript 没有class关键字,就是用function来实现. 1. 实现方式及变量/ ...
- Python Pandas与Numpy中axis参数的二义性
Stackoverflow.com是程序员的好去处,本公众号将以pandas为主题,开始一个系列,争取做到每周一篇,翻译并帮助pandas学习者一起理解一些有代表性的案例.今天的主题就是Pandas与 ...