题目

CF932E Team Work

前置:斯特林数\(\Longrightarrow\)点这里

做法

\[\begin{aligned}\\
&\sum\limits_{i=1}^n C_n^ii^k\\
&\sum\limits_{i=1}^n C_n^i\sum\limits_{j=0}^iC_i^j\begin{Bmatrix}k\\j\end{Bmatrix}j!\\
&\sum\limits_{i=1}^n \frac{n!}{(n-i)!}\sum\limits_{j=0}^i\frac{\begin{Bmatrix}k\\j\end{Bmatrix}}{(i-j)!}\\
&\sum\limits_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\sum\limits_{i=j}^n\frac{n!}{(n-i)!}\frac{1}{(i-j)!}\\
&\sum\limits_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\sum\limits_{i=j}^n\frac{n!}{(n-j)!}\frac{(n-j)!}{(n-i)!(i-j)!}\\
&\sum\limits_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\frac{n!}{(n-j)!}\sum\limits_{i=j}^nC_{n-j}^{i-j}\\
&\sum\limits_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\frac{n!}{(n-j)!}2^{n-j}\\
\end{aligned}\]

至此我们可以通过\(O(k^2)\)处理第二类斯特林数达到\(O(n^2)\)通过此题

Code

更多斯特林数及反演的姿势\(\Longrightarrow\)点这里

#include<bits/stdc++.h>
typedef int LL;
const LL maxn=5e3+9,mod=1e9+7,inv2=500000004;
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1) ret=1ll*ret*base%mod; base=1ll*base*base%mod; b>>=1;
}return ret;
}
LL ans[maxn][maxn];
inline void Fir(LL n){
ans[1][1]=1;
for(LL i=2;i<=n;++i)
for(LL j=1;j<=i;++j)
ans[i][j]=1ll*(ans[i-1][j-1]+1ll*j*ans[i-1][j]%mod)%mod;
}
inline LL Get(LL l,LL r){
LL ret(1);
for(LL i=l;i<=r;++i) ret=1ll*ret*i%mod;
return ret;
}
LL n,k,ret;
int main(){
scanf("%d%d",&n,&k);
Fir(k);
for(LL j=0,val1=1,val2=Pow(2,n);j<=k;++j,val1=1ll*val1*(n-j+1)%mod,val2=1ll*val2*inv2%mod)
ret=1ll*(ret+1ll*ans[k][j]*val1%mod*val2%mod)%mod;
printf("%d ",ret);
}

CF932E Team Work(第二类斯特林数)的更多相关文章

  1. CF932E Team Work——第二类斯特林数

    题解 n太大,而k比较小,可以O(k^2)做 想方设法争取把有关n的循环变成O(1)的式子 考虑用公式: 来替换i^k 原始的组合数C(n,i)一项,考虑能否和后面的系数分离开来,直接变成2^n处理. ...

  2. Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )

    题目链接 题意 : 其实就是要求 分析 : 先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?) 然后再一步步化简.使得最外层和 N 有关的 ∑ 划掉 这里有个技巧就是 将组合数的表达式放到一边. ...

  3. 【CF932E】Team Work(第二类斯特林数)

    [CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...

  4. CF932E Team Work(第二类斯特林数)

    传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...

  5. 【cf932E】E. Team Work(第二类斯特林数)

    传送门 题意: 求\(\displaystyle \sum_{i=0}^n{n\choose i}i^k,n\leq 10^9,k\leq 5000\). 思路: 将\(i^k\)用第二类斯特林数展开 ...

  6. Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数

    题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...

  7. 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

    [BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...

  8. 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)

    [BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...

  9. HDU - 4625 JZPTREE(第二类斯特林数+树DP)

    https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...

随机推荐

  1. 【Raspberry pi】GPIO注意事项

    1.GPIO编码的方法 第三列是树莓派板子上的自然编号(左边引脚为1-15,右边引脚为2-26),RPi.GPIO.setmode(GPIO.BOARD)采用这列编号 树莓派主芯片提供商Broadco ...

  2. 【python】函数参数-任意参数

    def min1(args): res=args[0] for arg in args[1:]: if arg<res: res=arg return res def min2(first,re ...

  3. PHP编程经常容易记乱的知识

    PHP经常容易记乱的知识 1.echo和print的区别 PHP中echo和print的功能基本相同(输出),但是两者之间还是有细微差别的.echo输出后没有返回值,但print有返回值,当其执行失败 ...

  4. Eclipse虚拟内存不足【Eclipse中虚拟内存设置】

    Eclipse最近在做J2EE项目中 发现老是出现虚拟内存不足的提示 前2天去加了根内存 问题同样存在 为了让我在写代码时 不在出现那讨厌的内存不足的提示 也为了 不让那破机器再卡住 今天找到了解决方 ...

  5. tfs+git

    TFS+GIT 一:背景介绍 技术团队的代码管理工具原来使用的是纯TFS方案,使用两年后发现一些问题:体积太大,每次新建一个分支需要本地下载一份代码:操作不便,功能分支的建立.合并不方便,本地有很多同 ...

  6. 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理

    [BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...

  7. Ubuntu 16.04 安装google浏览器

    因为安装的Linux是64位的Ubuntu 16.04系统,所以本人决定也安装64位的谷歌Chrome浏览器.在 Ubuntu 16.04 中,要想使用谷歌的 Chrome 浏览器,可以通过命令行的方 ...

  8. pc端和移动端的区别

    以下都是自己的个人理解,说错了希望大家多交流交流.1,普通pc端开发与移动端开发区别.普通pc端开发,我理解就是你拿电脑打开的网页都算[这相信大部分人都知道].那么移动端开发工程师,说白了就很好理解了 ...

  9. HDU 3367 Pseudoforest(Kruskal)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  10. pro-select-limit-if

    drop procedure if exists p9; CREATE PROCEDURE p9 () BEGIN DECLARE a INT; DECLARE b INT; DECLARE c IN ...