数论的欧拉定理证明 & 欧拉函数公式(转载)
欧拉函数 :
欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) 。
完全余数集合:
定义小于 n 且和 n 互质的数构成的集合为 Zn ,称呼这个集合为 n 的完全余数集合。 显然 |Zn| =φ(n) 。
有关性质:
对于素数 p ,φ(p) = p -1 。
对于两个不同素数 p, q ,它们的乘积 n = p * q 满足 φ(n) = (p -1) * (q -1) 。
这是因为 Zn = {1, 2, 3, ... , n - 1} - {p, 2p, ... , (q - 1) * p} - {q, 2q, ... , (p - 1) * q} , 则 φ(n) = (n - 1) - (q - 1) - (p - 1) = (p -1) * (q -1) =φ(p) * φ(q) 。
欧拉定理 :
对于互质的正整数 a 和 n ,有 aφ(n) ≡ 1 mod n 。
证明:
( 1 ) 令 Zn = {x1, x2, ..., xφ(n)} , S = {a * x1 mod n, a * x2 mod n, ... , a * xφ(n) mod n} ,
则 Zn = S 。
① 因为 a 与 n 互质, xi (1 ≤ i ≤ φ(n)) 与 n 互质, 所以 a * xi 与 n 互质,所以 a * xi mod n ∈ Zn 。
② 若 i ≠ j , 那么 xi ≠ xj,且由 a, n互质可得 a * xi mod n ≠ a * xj mod n (消去律)。
( 2 ) aφ(n) * x1 * x2 *... * xφ(n) mod n
≡ (a * x1) * (a * x2) * ... * (a * xφ(n)) mod n
≡ (a * x1 mod n) * (a * x2 mod n) * ... * (a * xφ(n) mod n) mod n
≡ x1 * x2 * ... * xφ(n) mod n
对比等式的左右两端,因为 xi (1 ≤ i ≤ φ(n)) 与 n 互质,所以 aφ(n) ≡ 1 mod n (消去律)。
注:
消去律:如果 gcd(c,p) = 1 ,则 ac ≡ bc mod p ⇒ a ≡ b mod p 。
费马定理 :
若正整数 a 与素数 p 互质,则有 ap - 1 ≡ 1 mod p 。
证明这个定理非常简单,由于 φ(p) = p -1,代入欧拉定理即可证明。
参考来源:
http://zhidao.baidu.com/question/15882452.html?si=2
》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》
补充:欧拉函数公式
( 1 ) pk 的欧拉函数
对于给定的一个素数 p , φ(p) = p -1。则对于正整数 n = pk ,
φ(n) = pk - pk -1
证明:
小于 p
k
的正整数个数为 p
k
- 1个,其中
和 p
k
不互质的正整数有{p * 1,p * 2,...,p * (pk - 1-1)} 共计 pk - 1 - 1 个
所以 φ(n) = p
k
- 1 - (p
k - 1
- 1) = p
k
- p
k - 1
。
( 2 ) p * q 的欧拉函数
假设 p, q是两个互质的正整数,则 p * q 的欧拉函数为
φ(p * q) = φ(p) * φ(q) , gcd(p, q) = 1 。
证明:
令 n = p * q , gcd(p,q) = 1
根据中国余数定理,有
Zn 和 Zp × Zq 之间存在一一映射
(我的想法是: a ∈ Zp , b ∈ Zq ⇔ b * p + a * q ∈ Zn 。)
所以 n 的完全余数集合的元素个数等于集合 Zp × Zq 的元素个数。
而后者的元素个数为 φ(p) * φ(q) ,所以有
φ(p * q) = φ(p) * φ(q) 。
( 3 ) 任意正整数的欧拉函数
任意一个整数 n 都可以表示为其素因子的乘积为:
I
n = ∏ p
iki
(I 为 n 的素因子的个数)
i=1
根据前面两个结论,很容易得出它的欧拉函数为:
I I
Φ(n) = ∏ piki -1(pi -1) = n ∏ (1 - 1 / pi)
i=1 i=1
对于任意 n > 2,2 | Φ(n) ,因为必存在 pi -1 是偶数。
程序代码可参见:http://blog.csdn.NET/Rappy/archive/2007/08/16/1747489.aspx
数论的欧拉定理证明 & 欧拉函数公式(转载)的更多相关文章
- Exponial (欧拉定理+指数循环定理+欧拉函数+快速幂)
题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2021 Description Everybody loves big numbers ...
- 欧拉函数&欧拉定理&降幂 总结
欧拉函数&欧拉定理&降幂 总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300214 这年头不总结一下是真的容易忘,老了老 ...
- UVA10200-Prime Time/HDU2161-Primes,例题讲解,牛逼的费马小定理和欧拉函数判素数。
10200 - Prime Time 此题极坑(本菜太弱),鉴定完毕,9遍过. 题意:很简单的求一个区间 ...
- O(n)求素数,求欧拉函数,求莫比乌斯函数,求对mod的逆元,各种求
筛素数 void shai() { no[1]=true;no[0]=true; for(int i=2;i<=r;i++) { if(!no[i]) p[++p[0]]=i; int j=1, ...
- 求一个极大数的欧拉函数 phi(i)
思路: 因为当n>=1e10的时候,线性筛就不好使啦.所以要用一个公式 φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn) 证明详见:<公式 ...
- √n求单值欧拉函数
基本定理: 首先看一下核心代码: 核心代码 原理解析: 当初我看不懂这段代码,主要有这么几个问题: 1.定理里面不是一开始写了一个n*xxx么?为什么代码里没有*n? 2.ans不是*(prime[i ...
- POJ 2407 Relatives (欧拉函数)
题目链接 Description Given n, a positive integer, how many positive integers less than n are relatively ...
- POJ 2407:Relatives(欧拉函数模板)
Relatives AC代码 Relatives Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16186 Accept ...
- [BZOJ3560]DZY Loves Math V(欧拉函数)
https://www.cnblogs.com/zwfymqz/p/9332753.html 由于欧拉函数是积性函数,可以用乘法分配律变成对每个质因子分开算最后乘起来.再由欧拉函数公式和分配律发现就是 ...
随机推荐
- python3 urllib爬取wallhalla网站图片
点我去我的github上看源码 简单使用静态方法爬取https://wallhalla.com/网站的图片 参考: https://blog.csdn.net/cquptcmj/article/det ...
- vuejs中的生命周期
vue中生命周期分为初始化,跟新状态,销毁三个阶段 1.初始化阶段:beforeCreated,created,beforeMount,mounted 2.跟新状态:beforeUpdate,upda ...
- BZOJ1228: [SDOI2009]E&D(打表SG)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 983 Solved: 583[Submit][Status][Discuss] Descriptio ...
- P1199 三国游戏
题目描述 小涵很喜欢电脑游戏,这些天他正在玩一个叫做<三国>的游戏. 在游戏中,小涵和计算机各执一方,组建各自的军队进行对战.游戏中共有 N 位武将(N为偶数且不小于 4),任意两个武将之 ...
- journalctl 日志查看方法
1 概述 日志管理工具journalctl是centos7上专有的日志管理工具,该工具是从message这个文件里读取信息.Systemd统一管理所有Unit的启动日志.带来的好处就是,可以只用jo ...
- CC3200使用MQTT的SSL加密证书可用日期修改
1. 在使用CC3200进行SSL加密的时候,需要证书,但是证书有一个截止日期,如果当前CC3200没有设置这个日期,那么证书通信会失败,需要添加代码 int setDeviceTime() { Sl ...
- connect by 语句
create table tb_menu( id number(10) not null, --主键id titlevarchar2(50), --标题 parent number(10) --par ...
- Java图片转字符
很久都没有更新博客了,昨天下午一个朋友问我能不能将一张图片转换成字符画,然后我想我这个朋友不知道,也许有的朋友以不知道,我就简单的分享一下 package com.xsl.zhuanhuan; imp ...
- android 几个工具方法
集合几个工具方法,方便以后使用. 1.获取手机 分辨率屏幕: public static void printScreenInfor(Context context){ DisplayMetrics ...
- 「日常训练」Uncle Tom's Inherited Land*(HDU-1507)
题意与分析 题意是这样的:给你一个\(N\times M\)的图,其中有一些点不能放置\(1\times 2\)大小的矩形,矩形可以横着放可以竖着放,问剩下的格子中,最多能够放多少个矩形. 注意到是\ ...