Codeforces 570D TREE REQUESTS dfs序+树状数组 异或
2 seconds
256 megabytes
standard input
standard output
Roman planted a tree consisting of n vertices. Each vertex contains a lowercase English letter. Vertex 1 is
the root of the tree, each of then - 1 remaining vertices has a parent in
the tree. Vertex is connected with its parent by an edge. The parent of vertex i is vertex pi,
the parent index is always less than the index of the vertex (i.e., pi < i).
The depth of the vertex is the number of nodes on the path from the root to v along
the edges. In particular, the depth of the root is equal to1.
We say that vertex u is in the subtree of vertex v,
if we can get from u to v,
moving from the vertex to the parent. In particular, vertex v is in its subtree.
Roma gives you m queries, the i-th
of which consists of two numbers vi, hi.
Let's consider the vertices in the subtree vi located
at depth hi.
Determine whether you can use the letters written at these vertices to make a string that is a palindrome. The letters that are written in the vertexes, can be rearranged in any order to make
a palindrome, but all letters should be used.
The first line contains two integers n, m (1 ≤ n, m ≤ 500 000)
— the number of nodes in the tree and queries, respectively.
The following line contains n - 1 integers p2, p3, ..., pn —
the parents of vertices from the second to the n-th (1 ≤ pi < i).
The next line contains n lowercase English letters, the i-th
of these letters is written on vertex i.
Next m lines describe the queries, the i-th
line contains two numbers vi, hi (1 ≤ vi, hi ≤ n)
— the vertex and the depth that appear in the i-th query.
Print m lines. In the i-th
line print "Yes" (without the quotes), if in the i-th
query you can make a palindrome from the letters written on the vertices, otherwise print "No" (without the quotes).
6 5
1 1 1 3 3
zacccd
1 1
3 3
4 1
6 1
1 2
Yes
No
Yes
Yes
Yes
String s is a palindrome if reads the same from left to right and
from right to left. In particular, an empty string is a palindrome.
Clarification for the sample test.
In the first query there exists only a vertex 1 satisfying all the conditions, we can form a palindrome "z".
In the second query vertices 5 and 6 satisfy condititions, they contain letters "с" and "d"
respectively. It is impossible to form a palindrome of them.
In the third query there exist no vertices at depth 1 and in subtree of 4. We may form an empty palindrome.
In the fourth query there exist no vertices in subtree of 6 at depth 1. We may form an empty palindrome.
In the fifth query there vertices 2, 3 and 4 satisfying all conditions above, they contain letters "a", "c"
and "c". We may form a palindrome "cac".
题意:
给定n个点的树。m个询问
以下n-1个数给出每一个点的父节点。1是root
每一个点有一个字母
以下n个小写字母给出每一个点的字母。
以下m行给出询问:
询问形如 (u, deep) 问u点的子树中,距离根的深度为deep的全部点的字母是否能在随意排列后组成回文串,能输出Yes.
思路:dfs序。给点又一次标号,dfs进入u点的时间戳记为l[u], 离开的时间戳记为r[u], 这样对于某个点u,他的子树节点相应区间都在区间 [l[u], r[u]]内。
把距离根深度同样的点都存到vector里 D[i] 表示深度为i的全部点,在dfs时能够顺便求出。
把询问按深度排序,query[i]表示全部深度为i的询问。
接下来依照深度一层层处理。
对于第i层,把全部处于第i层的节点都更新到26个树状数组上。
然后处理询问,直接查询树状数组上有多少种字母是奇数个的,显然奇数个字母的种数要<=1
处理完第i层。就把树状数组逆向操作,相当于清空树状数组
注意的一个地方就是 询问的深度是随意的,也就是说可能超过实际树的深度。也可能比当前点的深度小。。所以须要初始化一下答案。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <vector>
#include <string>
#include <time.h>
#include <math.h>
#include <iomanip>
#include <queue>
#include <stack>
#include <set>
#include <map>
const int inf = 1e9;
const double eps = 1e-8;
const double pi = acos(-1.0);
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x < 0) { putchar('-'); x = -x; }
if (x > 9) pt(x / 10);
putchar(x % 10 + '0');
}
using namespace std;
const int N = 5e5 + 100;
typedef long long ll;
typedef pair<int, int> pii;
struct BIT {
int c[N], maxn;
void init(int n) { maxn = n; memset(c, 0, sizeof c); }
inline int Lowbit(int x) { return x&(-x); }
void change(int i, int x)//i点增量为x
{
while (i <= maxn)
{
c[i] += x;
i += Lowbit(i);
}
}
int sum(int x) {//区间求和 [1,x]
int ans = 0;
for (int i = x; i >= 1; i -= Lowbit(i))
ans += c[i];
return ans;
}
int query(int l, int r) {
return sum(r) - sum(l - 1);
}
}t[26];
int n, m;
char s[N];
vector<int>G[N], D[N];
int l[N], r[N], top;
vector<pii>query[N];
bool ans[N];
void dfs(int u, int fa, int dep) {
D[dep].push_back(u);
l[u] = ++top;
for (auto v : G[u])
if (v != fa)dfs(v, u, dep + 1);
r[u] = top;
}
int main() {
rd(n); rd(m);
fill(ans, ans + m + 10, 1);
for (int i = 0; i < 26; i++) t[i].init(n);
for (int i = 2, u; i <= n; i++)rd(u), G[u].push_back(i);
top = 0;
dfs(1, 1, 1);
scanf("%s", s + 1);
for (int i = 1, u, v; i <= m; i++) {
rd(u); rd(v); query[v].push_back(pii(u, i));
}
for (int i = 1; i <= n; i++)
{
if (D[i].size() == 0)break;
for (auto v : D[i]) t[s[v] - 'a'].change(l[v], 1); for (pii Q : query[i])
{
int ou = 0;
for (int j = 0; j < 26; j++)
{
if (t[j].query(l[Q.first], r[Q.first]))
ou += t[j].query(l[Q.first], r[Q.first]) & 1;
}
ans[Q.second] = ou <= 1;
}
for (auto v : D[i]) t[s[v] - 'a'].change(l[v], -1);
}
for (int i = 1; i <= m; i++)ans[i] ? puts("Yes") : puts("No"); return 0;
}
另一种方法
对于深度 直接保存全部的节点
利用xor推断节点出现次数
这样二分到两个下标l,r时
myxor[r]^myxor[l-1]即为l+1到r的xor值
推断该值二进制每一位是否为1 为1表示该位相应的字母出现了奇数次 从而得出答案 仅仅有700ms左右
#include<bits/stdc++.h>
using namespace std;
vector<int>f[555555];
vector<int>g[555555];
vector<int> myxor[555555];
int m,n;
char s[555555];
int tim,fst[555555],nxt[555555];
int x,y;
int maxdeep=0;
int hsh[555555]; void dfs(int u,int dis)
{
tim++;
fst[u]=tim;
hsh[tim]=u;
f[dis].push_back(tim);
for(unsigned int i=0;i<g[u].size();i++)
dfs(g[u][i],dis+1);
nxt[u]=tim;
maxdeep=max(maxdeep,dis);
} void work(int l,int r,int d,int &ans)
{
r--;
l--;
int ret;
if(r<0)
return; ret=myxor[d][r];
if(l>=0)
ret^=myxor[d][l];
while(ret)
{
ans=ans+(ret&1);
ret>>=1;
}
} int main()
{
scanf("%d%d",&m,&n);
for(int i=2;i<=m;i++)
{
scanf("%d",&x);
g[x].push_back(i);
}
for(int i=1;i<=m;i++)
{
scanf(" %c",&s[i]);
}
dfs(1,1);
for(int i=1;i<=maxdeep;i++)
{
myxor[i].push_back(1<<(s[hsh[f[i][0]]]-'a')); for(int j=1;j<f[i].size();j++)
{
myxor[i].push_back((1<<(s[hsh[f[i][j]]]-'a'))^myxor[i][j-1]);
}
} int has;
for(int ti=1;ti<=n;ti++)
{
has=0;
scanf("%d%d",&x,&y); //root x deepth y
int l =lower_bound(f[y].begin(),f[y].end(),fst[x])-f[y].begin();
int r =upper_bound(f[y].begin(),f[y].end(),nxt[x])-f[y].begin();
work(l,r,y,has);
if(has<2)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}
#include<bits/stdc++.h>
using namespace std;
vector<int>G[500009];
vector<int>Query[500009];
int dep[500009];
char str[500009];
int ans[500009];
int height[500009];
void dfs(int u,int d)
{
for(int v:Query[u]) ans[v]^=dep[height[v]];
for(int v:G[u]) dfs(v,d+1); dep[d]^=(1<<(int)(str[u]-'a')); for(int v:Query[u]) ans[v]^=dep[height[v]];
}
int main()
{
int n,m,x,y;
scanf("%d%d",&n,&m);
for(int i=2;i<=n;i++)
{
scanf("%d",&x);
G[x].push_back(i);
}
scanf("%s",(str+1));
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
Query[x].push_back(i);
height[i]=y;
}
dfs(1,1);
for(int i=1;i<=m;i++)
{
if(ans[i]&(ans[i]-1)) printf("No\n");
else printf("Yes\n");
}
return 0;
}
Codeforces 570D TREE REQUESTS dfs序+树状数组 异或的更多相关文章
- Codeforces 570D TREE REQUESTS dfs序+树状数组
链接 题解链接:点击打开链接 题意: 给定n个点的树.m个询问 以下n-1个数给出每一个点的父节点,1是root 每一个点有一个字母 以下n个小写字母给出每一个点的字母. 以下m行给出询问: 询问形如 ...
- poj3321-Apple Tree(DFS序+树状数组)
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 36442 Accepted: 10894 Desc ...
- pku-3321 Apple Tree(dfs序+树状数组)
Description There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow ...
- POJ 3321 Apple Tree(dfs序树状数组)
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=10486 题意:一颗有n个分支的苹果树,根为1,每个分支只有一个苹果,给出n- ...
- POJ 3321:Apple Tree(dfs序+树状数组)
题目大意:对树进行m次操作,有两类操作,一种是改变一个点的权值(将0变为1,1变为0),另一种为查询以x为根节点的子树点权值之和,开始时所有点权值为1. 分析: 对树进行dfs,将树变为序列,记录每个 ...
- CodeForces 570D - Tree Requests - [DFS序+二分]
题目链接:https://codeforces.com/problemset/problem/570/D 题解: 这种题,基本上容易想到DFS序. 然后,我们如果再把所有节点分层存下来,那么显然可以根 ...
- Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组
C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...
- Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树
C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...
- HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...
随机推荐
- hdu多校第三场
Problem D. Euler Function 思路:打表找找规律. #include<bits/stdc++.h> #define LL long long #define fi f ...
- linux 下 php 扩展
首先查看,php 原来安装的配置 /www/server/php/72/bin/php -i | grep configure (php 位置) 加上你的扩展 '--with-mcrypt' make ...
- 数学【CF743C】Vladik and fractions
Description 请找出一组合法的解使得\(\frac {1}{x} + \frac{1}{y} + \frac {1}{z} = \frac {2}{n}\)成立 其中\(x,y,z\)为正整 ...
- python itertools的使用(转)
1. chain的使用 import itertools listone = ['a','b','c'] listtwo = ['11','22','abc'] for item in itertoo ...
- 雅礼集训DAY 6 T1 xmasdag
感谢gryz的mly大好人再次给我提供了题目和数据. 和昨晚那个题几乎一样,都是x^n最后转化成第二类斯特林数*阶乘*Σ(和路径长度有关的组合数),而因为组合数是可以利用Pascal公式实现O(1)递 ...
- 【贪心】Highway
[UVa1615]Highway 算法竞赛入门经典第8章8-11(P255) 题目大意:给定平面上N个点和D,要求在x轴上选出一些点,每个给定的点至少与一个选出的点欧几里得距离<=D 试题分析: ...
- 【转载】Java中String类的方法及说明
转载自:http://www.cnblogs.com/YSO1983/archive/2009/12/07/1618564.html String : 字符串类型 一. String sc_ ...
- Problem F: 零起点学算法85——数组中插入一个数
#include<stdio.h> int main() { ],b[]; while(scanf("%d",&n)!=EOF) { ;i<n;i++) ...
- [转]详细解析Java中抽象类和接口的区别
在Java语言中, abstract class 和interface 是支持抽象类定义的两种机制.正是由于这两种机制的存在,才赋予了Java强大的 面向对象能力.abstract class和int ...
- C# 高德地图调用帮助类 GaodeHelper
/// <summary> /// 高德地图调用帮助类 /// 更多详情请参考 高德api /// </summary> public class GaodeHelper { ...