Scrapy终端是一个交互终端,我们可以在未启动spider的情况下尝试及调试代码,也可以用来测试XPath或CSS表达式,查看他们的工作方式,方便我们爬取的网页中提取的数据。

如果安装了 IPython ,Scrapy终端将使用 IPython (替代标准Python终端)。 IPython 终端与其他相比更为强大,提供智能的自动补全,高亮输出,及其他特性。(推荐安装IPython)

1 启动Scrapy Shell

进入项目的根目录,执行下列命令来启动shell:

scrapy shell "https://hr.tencent.com/position.php?&start=0#a"

Scrapy Shell根据下载的页面会自动创建一些方便使用的对象,例如 Response 对象,以及Selector 对象 (对HTML及XML内容)

  • 当shell载入后,将得到一个包含response数据的本地 response 变量,输入response.body将输出response的包体,输出response.headers可以看到response的包头。
  • 输入response.selector时, 将获取到一个response 初始化的类 Selector 的对象,此时可以通过使用response.selector.xpath()response.selector.css()来对 response 进行查询。
  • Scrapy也提供了一些快捷方式, 例如response.xpath()response.css()同样可以生效(如之前的案例)。

2 Selectors选择器

Scrapy Selectors 内置 XPath 和 CSS Selector 表达式机制

Selector有四个基本的方法,最常用的还是xpath:

  • xpath(): 传入xpath表达式,返回该表达式所对应的所有节点的selector list列表
  • extract(): 序列化该节点为Unicode字符串并返回list
  • css(): 传入CSS表达式,返回该表达式所对应的所有节点的selector list列表,语法同 BeautifulSoup4
  • re(): 根据传入的正则表达式对数据进行提取,返回Unicode字符串list列表
response.xpath('//title')

3 Item Pipeline

当Item在Spider中被收集之后,它将会被传递到Item Pipeline,这些Item Pipeline组件按定义的顺序处理Item。

每个Item Pipeline都是实现了简单方法的Python类,比如决定此Item是丢弃而存储。以下是item pipeline的一些典型应用:

  • 验证爬取的数据(检查item包含某些字段,比如说name字段)
  • 查重(并丢弃)
  • 将爬取结果保存到文件或者数据库中

编写item pipeline很简单,item pipiline组件是一个独立的Python类,其中process_item()方法必须实现:

import something

class SomethingPipeline(object):
def __init__(self):
# 可选实现,做参数初始化等
# doing something def process_item(self, item, spider):
# item (Item 对象) – 被爬取的item
# spider (Spider 对象) – 爬取该item的spider
# 这个方法必须实现,每个item pipeline组件都需要调用该方法,
# 这个方法必须返回一个 Item 对象,被丢弃的item将不会被之后的pipeline组件所处理。
return item def open_spider(self, spider):
# spider (Spider 对象) – 被开启的spider
# 可选实现,当spider被开启时,这个方法被调用 (也可以放在__init__方法中) def close_spider(self, spider):
# spider (Spider 对象) – 被关闭的spider
# 可选实现,当spider被关闭时,这个方法被调用 (也可放入析构函数__del__方法中)

Pipeline实现文件的写入打开操作

以下pipeline将所有(从所有'spider'中)爬取到的item,存储到一个独立地txt文件

class TianyaPipeline(object):
def __init__(self):
self.f = open("tianya.txt", "w", encoding="utf-8")
def process_item(self, item, spider):
self.f.write(str(item))
# return item
def __del__(self):
self.f.close()
#附Python strip() 方法用于移除字符串头尾指定的字符(默认为空格或换行符)或字符序列
#replace用于替换指定字符
#join用于合并列表 元组等

启用一个Item Pipeline组件

为了启用Item Pipeline组件,必须将它的类添加到 settings.py文件ITEM_PIPELINES 配置,就像下面这个例子:

ITEM_PIPELINES = {
'tianya.pipelines.TianyaPipeline': 300,
}

分配给每个类的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内(0-1000随意设置,数值越低,组件的优先级越高)

4 Spider

Spider类定义了如何爬取某个(或某些)网站。包括了爬取的动作(例如:是否跟进链接)以及如何从网页的内容中提取结构化数据(爬取item)。 换句话说,Spider就是您定义爬取的动作及分析某个网页(或者是有些网页)的地方。

class scrapy.Spider是最基本的类,所有编写的爬虫必须继承这个类。

主要用到的函数及调用顺序为:

__init__(): 初始化爬虫名字和start_urls列表

start_requests() 调用make_requests_from url():生成Requests对象交给Scrapy下载并返回response

parse(): 解析response,并返回Item或Requests(需指定回调函数)。Item传给Item pipline持久化 , 而Requests交由Scrapy下载,并由指定的回调函数处理(默认parse()),一直进行循环,直到处理完所有的数据为止。

源码参考

#所有爬虫的基类,用户定义的爬虫必须从这个类继承
class Spider(object_ref): #定义spider名字(string)。spider的名字定义了Scrapy如何定位(并初始化)spider,所以其必须是唯一的。
#name是spider最重要的属性,而且是必须的。
#一般做法是以该网站(domain)(加或不加 后缀 )来命名spider。例如,爬取百度命名为: baidu
name = None #初始化,提取爬虫名字,start_ruls
def __init__(self, name=None, **kwargs):
if name is not None:
self.name = name
# 如果爬虫没有名字,中断后续操作则报错
elif not getattr(self, 'name', None):
raise ValueError("%s must have a name" % type(self).__name__) # python 对象或类型通过内置成员__dict__来存储成员信息
self.__dict__.update(kwargs) #URL列表。当没有指定的URL时,spider将从该列表中开始进行爬取。
#因此,第一个被获取到的页面的URL将是该列表之一。后续的URL将会从获取到的数据中提取。
if not hasattr(self, 'start_urls'):
self.start_urls = [] # 打印Scrapy执行后的log信息
def log(self, message, level=log.DEBUG, **kw):
log.msg(message, spider=self, level=level, **kw) # 判断对象object的属性是否存在,不存在做断言处理
def set_crawler(self, crawler):
assert not hasattr(self, '_crawler'), "Spider already bounded to %s" % crawler
self._crawler = crawler @property
def crawler(self):
assert hasattr(self, '_crawler'), "Spider not bounded to any crawler"
return self._crawler @property
def settings(self):
return self.crawler.settings #该方法将读取start_urls内的地址,并为每一个地址生成一个Request对象,交给Scrapy下载并返回Response
#该方法仅调用一次
def start_requests(self):
for url in self.start_urls:
yield self.make_requests_from_url(url) #start_requests()中调用,实际生成Request的函数。
#Request对象默认的回调函数为parse(),提交的方式为get
def make_requests_from_url(self, url):
return Request(url, dont_filter=True) #默认的Request对象回调函数,处理返回的response。
#生成Item或者Request对象。用户必须实现这个类
def parse(self, response):
raise NotImplementedError @classmethod
def handles_request(cls, request):
return url_is_from_spider(request.url, cls) def __str__(self):
return "<%s %r at 0x%0x>" % (type(self).__name__, self.name, id(self)) __repr__ = __str__

主要属性和方法

  • name

    定义spider名字的字符串。

    例如,如果spider爬取 mywebsite.com ,该spider通常会被命名为 mywebsite

  • allowed_domains

    包含了spider允许爬取的域名(domain)的列表,可选。

  • start_urls

    初始URL元祖/列表。当没有制定特定的URL时,spider将从该列表中开始进行爬取。

  • start_requests(self)

    该方法必须返回一个可迭代对象(iterable)。该对象包含了spider用于爬取(默认实现是使用 start_urls 的url)的第一个Request。

    当spider启动爬取并且未指定start_urls时,该方法被调用。

  • parse(self, response)

    当请求url返回网页没有指定回调函数时,默认的Request对象回调函数。用来处理网页返回的response,以及生成Item或者Request对象。

  • log(self, message[, level, component])

    使用 scrapy.log.msg() 方法记录(log)message。 更多数据请参见logging

5 案例:腾讯招聘网自动翻页采集

  • 创建一个新的爬虫:

scrapy genspider tencent "tencent.com"

  • 编写items.py

获取职位名称、详细信息、

class TencentItem(scrapy.Item):
# 定义需要爬取的字段
jobTitle = scrapy.Field()
jobCategories = scrapy.Field()
number = scrapy.Field()
location = scrapy.Field()
releasetime = scrapy.Field()
  • 编写tencent.py
# -*- coding: utf-8 -*-
import re
import scrapy
from Tencent import items class MytencentSpider(scrapy.Spider):
name = 'myTencent'
allowed_domains = ['hr.tencent.com']
start_urls = ['https://hr.tencent.com/position.php?lid=2218&start=0#a'] def parse(self, response):
for data in response.xpath("//tr[@class=\"even\"] | //tr[@class=\"odd\"]"):
item = items.TencentItem()
item["jobTitle"] = data.xpath("./td[1]/a/text()")[0].extract()
item["jobLink"] = data.xpath("./td[1]/a/@href")[0].extract()
item["jobCategories"] = data.xpath("./td[1]/a/text()")[0].extract()
item["number"] = data.xpath("./td[2]/text()")[0].extract()
item["location"] = data.xpath("./td[3]/text()")[0].extract()
item["releasetime"] = data.xpath("./td[4]/text()")[0].extract()
yield item for i in range(1, 200):
newurl = "https://hr.tencent.com/position.php?lid=2218&start=%d#a" % (i*10)
yield scrapy.Request(newurl, callback=self.parse)
  • 编写pipeline.py文件
class TencentPipeline(object):
def __init__(self):
self.file = open("tencent.txt", "w", encoding="utf-8") #初始化即打开 def process_item(self, item, spider):
line = str(item) + "\r\n"
self.file.write(line)
self.file.flush()
return item def __del__(self): #数据清除时关闭
self.file.close()
  • 在 setting.py 里设置ITEM_PIPELINES
ITEM_PIPELINES = {
"mySpider.pipelines.TencentJsonPipeline":300
}
  • 执行爬虫:

    scrapy crawl tencent.py

爬虫入门之Scrapy框架基础框架结构及腾讯爬取(十)的更多相关文章

  1. 爬虫入门之Scrapy 框架基础功能(九)

    Scrapy是用纯Python实现一个为了爬取网站数据.提取结构性数据而编写的应用框架,用途非常广泛. 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非 ...

  2. 爬虫入门之Scrapy框架基础rule与LinkExtractors(十一)

    1 parse()方法的工作机制: 1. 因为使用的yield,而不是return.parse函数将会被当做一个生成器使用.scrapy会逐一获取parse方法中生成的结果,并判断该结果是一个什么样的 ...

  3. scrapy框架基于CrawlSpider的全站数据爬取

    引入 提问:如果想要通过爬虫程序去爬取”糗百“全站数据新闻数据的话,有几种实现方法? 方法一:基于Scrapy框架中的Spider的递归爬取进行实现(Request模块递归回调parse方法). 方法 ...

  4. python爬虫入门(六) Scrapy框架之原理介绍

    Scrapy框架 Scrapy简介 Scrapy是用纯Python实现一个为了爬取网站数据.提取结构性数据而编写的应用框架,用途非常广泛. 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬 ...

  5. 爬虫入门之Scrapy框架实战(新浪百科豆瓣)(十二)

    一 新浪新闻爬取 1 爬取新浪新闻(全站爬取) 项目搭建与开启 scrapy startproject sina cd sina scrapy genspider mysina http://roll ...

  6. Python爬虫入门教程 4-100 美空网未登录图片爬取

    美空网未登录图片----简介 上一篇写的时间有点长了,接下来继续把美空网的爬虫写完,这套教程中编写的爬虫在实际的工作中可能并不能给你增加多少有价值的技术点,因为它只是一套入门的教程,老鸟你自动绕过就可 ...

  7. Python爬虫入门教程 13-100 斗图啦表情包多线程爬取

    斗图啦表情包多线程爬取-写在前面 今天在CSDN博客,发现好多人写爬虫都在爬取一个叫做斗图啦的网站,里面很多表情包,然后瞅了瞅,各种实现方式都有,今天我给你实现一个多线程版本的.关键技术点 aioht ...

  8. 19 03 13 关于 scrapy 框架的 对环球网的整体爬取(存储于 mongodb 数据库里)

    关于  spinder  在这个框架里面   和不用数据库  相同 # -*- coding: utf-8 -*- import scrapy from yang_guan.items import ...

  9. 爬虫开发11.scrapy框架之CrawlSpider操作

    提问:如果想要通过爬虫程序去爬取”糗百“全站数据新闻数据的话,有几种实现方法? 方法一:基于Scrapy框架中的Spider的递归爬取进行实现(Request模块递归回调parse方法). 方法二:基 ...

随机推荐

  1. java ee的map

  2. WPF中的快捷键(累积中)

    1. 显示可选属性, ctrl + J 如上图,当不知道Background的可选择时,可以输入 ctrl + J,系统就会显示所有可选属性

  3. 快手、抖音、微视类短视频SDK接入教程,7步就能搞定

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由视频咖 发表于云+社区专栏 终端部分 按照如下三步操作,可以用 XCode 或者 Android Studio 编译和调试小视频 Ap ...

  4. 在本地用命令行创建一个git仓库,并推送到远程

    首先,进入的gitStore目录下(没有的话自己创建一个) 1.git init 在gitStore目录下 初始化一个git仓库 2.git add 复制一个文件到gitStore目录下,然后执行gi ...

  5. 打开usb调试的方法

    方法一: settings --> about tablet --> build number(疯狂点击)  -->回退 developer options --> USB d ...

  6. jQuery ajax async

    jQuery 同步调用: jQuery.ajax({ type:'POST', async: false, url:'qcTask/add', contentType:'application/jso ...

  7. Linux文件夹和文件创建删除命令

    Linux删除文件夹命令 linux删除目录很简单,很多人还是习惯用rmdir,不过一旦目录非空,就陷入深深的苦恼之中,现在使用rm -rf命令即可.直接rm就可以了,不过要加两个参数-rf 即:rm ...

  8. 图像的点运算----底层代码与Halcon库函数

    最基本的图像分析工具----灰度直方图.使用直方图辅助,可以实现4大灰度变换,包括线性灰度变换(灰度拉伸).灰度对数变换.灰度伽马变换.灰度分段线性变换:使用直方图修正技术,可以实现2大变换,包括直方 ...

  9. Javascript与jQuery方法的隐藏与显示

    如题,代码奉上. <html> <head> <title>denotoggle</title> <style> #box { width: ...

  10. golang中的make与new

    golang 中有两个内存分配机制 :new和make,二者有明显区别. new:new(T)分配了零值填充的T类型的内存空间,并且返回其地址,即一个*T类型的值.其自身是一个指针.可用于初始化任何类 ...