MapReduce优化参数
资源相关参数
//以下参数是在用户自己的 MapReduce 应用程序中配置就可以生效
(1) mapreduce.map.memory.mb: 一个 Map Task 可使用的内存上限(单位:MB),默认为 1024。如果 Map Task 实际使用的资源量超过该值,则会被强制杀死。
(2) mapreduce.reduce.memory.mb: 一个 Reduce Task 可使用的资源上限(单位:MB),默认为 1024。如果 Reduce Task 实际使用的资源量超过该值,则会被强制杀死。
(3) mapreduce.map.cpu.vcores: 每个 Maptask 可用的最多 cpu core 数目, 默认值: 1
(4) mapreduce.reduce.cpu.vcores: 每个 Reducetask 可用最多 cpu core 数目默认值: 1
(5) mapreduce.map.java.opts: Map Task 的 JVM 参数,你可以在此配置默认的 java heap size 等参数, 例如:“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc”(@taskid@会被 Hadoop 框架自动换为相应的 taskid), 默认值: “”
(6) mapreduce.reduce.java.opts: Reduce Task 的 JVM 参数,你可以在此配置默认的 javaheap size 等参数, 例如:“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc”, 默认值: “”
//应该在 yarn 启动之前就配置在服务器的配置文件中才能生效
(1) yarn.scheduler.minimum-allocation-mb RM 中每个容器请求的最小配置,以 MB 为单位,默认 1024。
(2) yarn.scheduler.maximum-allocation-mb RM 中每个容器请求的最大分配,以 MB 为单位,默认 8192。
(3) yarn.scheduler.minimum-allocation-vcores 1
(4)yarn.scheduler.maximum-allocation-vcores 32
(5) yarn.nodemanager.resource.memory-mb 表示该节点上YARN可使用的物理内存总量,默认是 8192(MB),注意,如果你的节点内存资源不够 8GB,则需要调减小这个值,而 YARN不会智能的探测节点的物理内存总量。
//shuffle 性能优化的关键参数,应在 yarn 启动之前就配置好
(1) mapreduce.task.io.sort.mb 100 shuffle 的环形缓冲区大小,默认 100m
(2) mapreduce.map.sort.spill.percent 0.8 环形缓冲区溢出的阈值,默认 80%
容错相关参数
(1) mapreduce.map.maxattempts: 每个 Map Task 最大重试次数,一旦重试参数超过该值,则认为 Map Task 运行失败,默认值:4。
(2) mapreduce.reduce.maxattempts: 每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为 Map Task 运行失败,默认值:4。
(3) mapreduce.map.failures.maxpercent: 当失败的 Map Task 失败比例超过该值,整个作业则失败,默认值为 0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于 0 的值,比如 5,表示如果有低于 5%的 Map Task 失败(如果一个 Map Task 重试次数超过mapreduce.map.maxattempts,则认为这个 Map Task 失败,其对应的输入数据将不会产生任何结果),整个作业扔认为成功。
(4) mapreduce.reduce.failures.maxpercent: 当失败的 Reduce Task 失败比例超过该值为,整个作业则失败,默认值为 0.
(5) mapreduce.task.timeout:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该 task 处于 block 状态,可能是临时卡住,也许永远会卡住。为了防止因为用户程序永远 block 不退出,则强制设置了一个超时时间(单位毫秒),默认是600000,值为 0 将禁用超时。。
效率跟稳定性参数
(1) mapreduce.map.speculative: 是否为 Map Task 打开推测执行机制,默认为 true, 如果为 true,则可以并行执行一些 Map 任务的多个实例。
(2) mapreduce.reduce.speculative: 是否为 Reduce Task 打开推测执行机制,默认为 true
(3)mapreduce.input.fileinputformat.split.minsize: FileInputFormat做切片时最小切片大小,默认 1。
(4)mapreduce.input.fileinputformat.split.maxsize: FileInputFormat做切片时最大切片大小
推测执行机制(Speculative Execution):它根据一定的法则推测出“拖后腿”的任务,并为这样的任务启动一个备份任务,让该任务与原始任务同时处理同一份数据,并最终选用最先成功运行完成任务的计算结果作为最终结果。
MapReduce优化参数的更多相关文章
- map-reduce 优化
map阶段优化 参数:io.sort.mb(default 100) 当map task开始运算,并产生中间数据时,其产生的中间结果并非直接就简单的写入磁盘. 而是会利用到了内存buffer来进行已经 ...
- php-fpm优化参数介绍
1.php-fpm优化参数介绍他们分别是:pm.pm.max_children.pm.start_servers.pm.min_spare_servers.pm.max_spare_servers. ...
- Nginx 笔记(四)nginx 原理与优化参数配置 与 nginx 搭建高可用集群
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 一.nginx 原理与优化参数配置 master-workers 的机制的好处 首先,对于每个 ...
- hadoop mapreduce 端参数优化
在MapReduce执行过程中,特别是Shuffle阶段,尽量使用内存缓冲区存储数据,减少磁盘溢写次数:同时在作业执行过程中增加并行度,都能够显著提高系统性能,这也是配置优化的一个重要依据. 下面分别 ...
- mapreduce优化总结
集群的优化 1.合理分配map和reduce任务的数量(单个节点上map任务.reduce任务的最大数量) 2.其他配置 io.file.buffer.size hadoop访问文件的IO操作都需要通 ...
- hadoop mapreduce 优化
http://www.cnblogs.com/c840136/archive/2013/03/10/2952887.html http://irwenqiang.iteye.com/blog/1535 ...
- MapReduce优化
Combiner和Partitioner是用来优化MapReduce的,可以提高MapReduce的运行效率.下面我们来具体学习这两个组件 Combiner 我们以WordCount为例,首先通过下面 ...
- hbase 程序优化 参数调整方法
hbase读数据用scan,读数据加速的配置参数为: Scan scan = new Scan(); scan.setCaching(500); // 1 is the default in Scan ...
- MapReduce任务参数调优(转)
http://blog.javachen.com/2014/06/24/tuning-in-mapreduce/ 本文主要记录Hadoop 2.x版本中MapReduce参数调优,不涉及Yarn的调优 ...
随机推荐
- C++下遍历文件夹
编写程序遍历文件夹及其子文件夹下所有文件,并输出到标准输出流或者文件流. 1. 先考虑在单层目录下,遍历所有文件.以C:\WINDOWS为例: 用到数据结构_finddata_t,文件信息结构体的指针 ...
- vue 路由更新页面视图未更新问题
最近项目做面包屑的时候遇到一个问题就是路由变化的时候页面视图并没有发生变化,后来上网查,发现是vue-router的特性导致的. vue-router的切换不同于传统的页面的切换.路由之间的切换,其实 ...
- 【Web开发】一、页面布局
一.Frame <frameset id="topFrameSet" rows="69,*" border="0" framespac ...
- idea常用快捷汇总
目录 1.查询 2. 自动提示 3. 代码生成 4. 摆脱鼠标 5.源码阅读 1.查询 Shift+ Ctrl + F 全文搜索 Shift + Shift 文件名搜索 Ctrl + F 在当前文件进 ...
- 手写css按钮组
css: .lf{float:left} .btn{ width:60px; height:24px; color:#fff; border-radius:4px; cursor:pointer; b ...
- Python基础(6) - 基本语句
Python print(在Python 3.0中就变成了函数了) print语句是把对象用文本化的形式输出到标准的输出流上. Operation Interpretation print spam ...
- Python基础(3) - 数据类型:5字典类型
Python Dictionary 是 Python 的内置数据类型之一, 它定义了键和值之间一对一的关系 .它是用{}括起来的.每个Dictionary的项的句法为:key:value. Dicti ...
- python: local variable 'xxx' referenced before assignment
问题发现 xxx = 23 def PrintFileName(strFileName): if xxx == 23: print strFileName xxx = 24 PrintFileName ...
- Java ee 之 html/css样式复习
内容: 1,html/css样式 2,模拟简书注册登陆页面 *重点: 1,width:auto;height:auto; 2,background-image:url(Q5.png);left top ...
- jmeter(5)——参数化
之前接触过QTP或者Loadrunner的小伙伴,应该对参数化不陌生,在<badboy详解篇>中也介绍了badboy的参数化,今天说一下jmeter的参数化,同样,我们举例说明,以msn. ...