题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3202

可见Zinn博客:https://www.cnblogs.com/Zinn/p/10073897.html

关于算有序三元组那个部分,自己觉得是这样解释:

这样标号的话,旋转置换有2个:(1,2,3)和(1,3,2); 不动的话是一个置换:(1)(2)(3); 翻转的话,贴着一个侧面所在的面上下翻转,就是三个置换:(1)(2,3)、(2)(1,3)、(3)(1,2)。根据Polya定理算不动点个数,就是 \( \frac{1}{6}(2*g(1)+g(3)+3*g(2) \) ,其中 g(x) 表示选 x 个数且其gcd=1的方案数。(比如 (1,2,3) ,如果“不动”的话,3个位置的数都要一样,即找1个数,是g(1);(1)(2,3)的话,2、3位置的数一样,即找两个数,是g(2))。

通过 dfs 质因数的幂来找出所有约数的方法很好,因为可以顺便做出 phi 。

注释掉的那个快速乘好像会 WA ?

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=1e7+,mod=1e9+,base=1e5;
ll M=(ll)(1e9+)*(ll)(1e9+);//(ll)!!!!!
int a,T,pri[N],cnt;ll n,t,u[N],ans,p[],q[],tot,tmd;
bool vis[N],fx;
void upd(ll &x,ll md){x>=md?x-=md:;x<?x+=md:;}
/*ll mul(ll a,ll b,ll md)
{ll ret=0;while(b){if(b&1ll)ret+=a,upd(ret,md);a+=a;upd(a,md);b>>=1ll;}return ret;}*/
/*ll mul(ll a,ll b,ll md)//slow and WA?
{
ll bs=(md==M?mod:base);
ll A=a/bs,B=a%bs,C=b/bs,D=b%bs;
ll ret=A*C%md*bs%md*bs%md;
ret=(ret+A*D%md*bs)%md;
ret=(ret+B*C%md*bs)%md;
ret=(ret+B*D)%md;
return ret;
}
*/
ll mul(ll a,ll b,ll md)
{
return (a*b-(ll)( ((long double)a*b+0.5)/(long double)md )*md+md)%md;
}
ll pw(ll x,ll k,ll md)
{x%=md;k%=(md-);ll ret=;while(k){if(k&)ret=mul(ret,x,md);x=mul(x,x,md);k>>=;}return ret;}
void calc(ll md)
{
ll g2=,g3=;
for(int i=,j,d;i<=a;i=j+)
{
d=a/i; j=a/d; ll k=u[j]-u[i-];upd(k,md);
ll tmp=mul(mul(d,d,md),k,md);
g2=g2+tmp; upd(g2,md);
tmp=mul(tmp,d,md);
g3=g3+tmp; upd(g3,md);
}
t=(g3+*g2+)%md;
t=mul(t,pw(,fx?M-mod-:mod-,md),md);//phi(M)=mod*(mod-1)
}
void init()
{
memset(vis,,sizeof vis); cnt=;
u[]=; ll d;
for(int i=;i<=a;i++)
{
if(!vis[i])u[i]=-,pri[++cnt]=i;
for(int j=;j<=cnt&&(d=(ll)i*pri[j])<=a;j++)
{
vis[d]=;u[d]=-u[i];
if(i%pri[j]==){u[d]=;break;}
}
}
for(int i=;i<=a;i++)u[i]+=u[i-],upd(u[i],tmd);
calc(tmd);
}
ll F(ll x,ll md)
{
ll ret=;
if(x&1ll)ret=-t; else ret=t-;
upd(ret,md);
ret+=pw(t-,x,md); upd(ret,md);
return ret;
}
ll Phi(ll x,ll md)
{
ll ret=x,yx=x;
for(ll d=;d*d<=x;d++)
if(x%d==)
{
ret/=d; ret*=(d-);
while(x%d==)x/=d;
}
if(x>)ret/=x,ret*=(x-);
return ret%md;
}
void cal(ll x)
{
tot=;
for(ll i=;i*i<=x;i++)
if(x%i==)
{
p[++tot]=i;q[tot]=;
while(x%i==)x/=i,q[tot]++;
}
if(x>)p[++tot]=x,q[tot]=;
}
void dfs(int cr,ll nw,ll phi)
{
if(cr>tot){ans+=mul(F(n/nw,tmd),phi,tmd);upd(ans,tmd);return;}
dfs(cr+,nw,phi);
nw*=p[cr];phi*=p[cr]-;//needn't tmd
dfs(cr+,nw,phi);
for(int i=;i<=q[cr];i++)
nw*=p[cr],phi*=p[cr],dfs(cr+,nw,phi);
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%lld%d",&n,&a);
fx=(n%mod==); if(fx)tmd=M; else tmd=mod;
init(); ans=;
cal(n); dfs(,,);
/*
for(ll d=1;d*d<=n;d++)//d=1
if(n%d==0)
{
ll k=n/d;
ans+=mul(F(d,md),Phi(k,md),md); upd(ans,md);
if(k!=d)ans+=mul(F(k,md),Phi(d,md),md), upd(ans,md);//mul
}
*/
if(fx)ans/=mod,ans=ans*pw(n/mod,mod-,mod)%mod;
else ans=ans*pw(n,mod-,mod)%mod;
printf("%lld\n",ans);
}
return ;
}

bzoj 3202 [Sdoi2013]项链——容斥+置换+推式子的更多相关文章

  1. 洛谷 P3307: bzoj 3202: [SDOI2013] 项链

    题目传送门:洛谷P3307.这题在bzoj上是权限题. 题意简述: 这题分为两个部分: ① 有一些珠子,每个珠子可以看成一个无序三元组.三元组要满足三个数都在$1$到$m$之间,并且三个数互质,两个珠 ...

  2. bzoj 3202: [Sdoi2013]项链

    Description 项链是人体的装饰品之一,是最早出现的首饰.项链除了具有装饰功能之外,有些项 链还具有特殊显示作用,如天主教徒的十字架链和佛教徒的念珠. 从古至今人们为了美化人体本身,也美 化环 ...

  3. bzoj3198[Sdoi2013]spring 容斥+hash

    3198: [Sdoi2013]spring Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1143  Solved: 366[Submit][Sta ...

  4. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  5. BZOJ 4455: [Zjoi2016]小星星(容斥+树形dp)

    传送门 解题思路 首先题目中有两个限制,第一个是两个集合直接必须一一映射,第二个是重新标号后,\(B\)中两点有边\(A\)中也必须有.发现限制\(2\)比较容易满足,考虑化简限制\(1\).令\(f ...

  6. [SDOI2013]泉(容斥)

    /* 容斥加上哈希 首先我们可以2 ^ 6枚举相同情况, 然后对于这些确定的位置哈希一下统计方案数 这样我们就统计出了这些不同方案的情况, 然后容斥一下就好了 */ #include<cstdi ...

  7. BZOJ 2440 莫比乌斯函数+容斥+二分

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5473  Solved: 2679[Submit][Sta ...

  8. BZOJ 3771: Triple(FFT+容斥)

    题面 Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: "这把斧头,是不是你的?" 樵夫一看:&qu ...

  9. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

随机推荐

  1. java object 转为 json

    JSONObject jsonObject=JSONObject.fromObject(map) 执行到这的时候没有任何反应的原因及解决办法 http://blog.csdn.net/tjcyjd/a ...

  2. 如何查看eclipse、mysql的版本 - 原创

    Eclipse 1)如果实在官网下载的,看压缩包名字就可以看出来,只带有win32字样的是32位,带有win32-x86_64字样的是64位的. 2)找到eclipse安装目录的eclipse.ini ...

  3. C++ dll的隐式与显式调用

    应用程序使用DLL可以采用两种方式:一种是隐式链接,另一种是显式链接.在使用DLL之前首先要知道DLL中函数的结构信息.Visual C++6.0(或者更先进的版本)在VC\bin目录下提供了一个名为 ...

  4. Codeforces Round #364 (Div. 2) C. They Are Everywhere 尺取法

    C. They Are Everywhere time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  5. Pandas分组(GroupBy)

    任何分组(groupby)操作都涉及原始对象的以下操作之一.它们是 - 分割对象 应用一个函数 结合的结果 在许多情况下,我们将数据分成多个集合,并在每个子集上应用一些函数.在应用函数中,可以执行以下 ...

  6. 2015 Syrian Private Universities Collegiate Programming Contest

    A. Window B. Paper Game Des:给你一个矩形集合,一开始只有一个W*H的矩形.每次可以选一个矩形,切成两个并加入集合,长和宽必须是正整数.不能操作者输,求先手赢还是输.(1 ≤ ...

  7. vue2 遇到的问题汇集ing

    1 .子路由 { path: '/order-list', //订单列表 name: "order-list", component(resolve) { require.ensu ...

  8. python学习笔记(threading接口性能压力测试)

    又是新的一周 延续上周的进度 关于多进程的学习 今天实践下 初步设计的接口性能压力测试代码如下: #!/usr/bin/env python # -*- coding: utf_8 -*- impor ...

  9. python学习笔记(requests)

    昨天用jmeter尝试了下接口测试 在部分接口中要上传文件这里遇到了问题.今天改用python的requests框架试下 先简单的写了个登录的接口.本人初学者,第一次写接口脚本 #!/usr/bin/ ...

  10. Referenced file contains errors (http://www.springframework.org/schema/aop/spring-aop-3.0.xsd). For more information, right click on the message in th

    XML code<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC &q ...