操作:
YARN→Config→Advanced→Schedule
 capacity-scheduler=null
yarn.scheduler.capacity.default.minimum-user-limit-percent=
yarn.scheduler.capacity.maximum-am-resource-percent=0.2
yarn.scheduler.capacity.maximum-applications=
yarn.scheduler.capacity.node-locality-delay=
yarn.scheduler.capacity.root.accessible-node-labels=*
yarn.scheduler.capacity.root.acl_administer_queue=*
yarn.scheduler.capacity.root.capacity=
yarn.scheduler.capacity.root.default.acl_administer_jobs=*
yarn.scheduler.capacity.root.default.acl_submit_applications=*
yarn.scheduler.capacity.root.default.capacity=
yarn.scheduler.capacity.root.default.maximum-capacity=
yarn.scheduler.capacity.root.default.state=RUNNING
yarn.scheduler.capacity.root.default.user-limit-factor=
yarn.scheduler.capacity.root.queues=Support,Marketing,Engineering
yarn.scheduler.capacity.root.Engineering.Development.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.Development.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.Development.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.Development.capacity=
yarn.scheduler.capacity.root.Engineering.Development.minimumaximum-capacity=
yarn.scheduler.capacity.root.Engineering.Development.state=RUNNING
yarn.scheduler.capacity.root.Engineering.Development.user-limit-factor=
yarn.scheduler.capacity.root.Engineering.QE.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.QE.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.QE.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.QE.capacity=
yarn.scheduler.capacity.root.Engineering.QE.maximum-capacity=
yarn.scheduler.capacity.root.Engineering.QE.state=RUNNING
yarn.scheduler.capacity.root.Engineering.QE.user-limit-factor=
yarn.scheduler.capacity.root.Engineering.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.capacity=
yarn.scheduler.capacity.root.Engineering.maximum-capacity=
yarn.scheduler.capacity.root.Engineering.queues=Development,QE
yarn.scheduler.capacity.root.Engineering.state=RUNNING
yarn.scheduler.capacity.root.Engineering.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.Advertising.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.Advertising.acl_administer_queue=*
yarn.scheduler.capacity.root.Marketing.Advertising.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.Advertising.capacity=
yarn.scheduler.capacity.root.Marketing.Advertising.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.Advertising.state=STOPPED
yarn.scheduler.capacity.root.Marketing.Advertising.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.Sales.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.Sales.acl_administer_queue=*
yarn.scheduler.capacity.root.Marketing.Sales.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.Sales.capacity=
yarn.scheduler.capacity.root.Marketing.Sales.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.Sales.minimum-user-limit-percent=
yarn.scheduler.capacity.root.Marketing.Sales.state=RUNNING
yarn.scheduler.capacity.root.Marketing.Sales.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.capacity=
yarn.scheduler.capacity.root.Marketing.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.queues=Sales,Advertising
yarn.scheduler.capacity.root.Marketing.state=RUNNING
yarn.scheduler.capacity.root.Marketing.user-limit-factor=
yarn.scheduler.capacity.root.Support.Services.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.Services.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.Services.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.Services.capacity=
yarn.scheduler.capacity.root.Support.Services.maximum-capacity=
yarn.scheduler.capacity.root.Support.Services.minimum-user-limit-percent=
yarn.scheduler.capacity.root.Support.Services.state=RUNNING
yarn.scheduler.capacity.root.Support.Services.user-limit-factor=
yarn.scheduler.capacity.root.Support.Training.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.Training.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.Training.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.Training.capacity=
yarn.scheduler.capacity.root.Support.Training.maximum-capacity=
yarn.scheduler.capacity.root.Support.Training.state=RUNNING
yarn.scheduler.capacity.root.Support.Training.user-limit-factor=
yarn.scheduler.capacity.root.Support.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.capacity=
yarn.scheduler.capacity.root.Support.maximum-capacity=
yarn.scheduler.capacity.root.Support.queues=Training,Services
yarn.scheduler.capacity.root.Support.state=RUNNING
yarn.scheduler.capacity.root.Support.user-limit-factor=
yarn.scheduler.capacity.root.unfunded.capacity=
 
全靠手写了。
然后通过链接进入到resource manager页面,选择左侧链接,点击Scheduler,就可以看到这次添加的队列,support,marketing以及Engineering。
参考:

Ambari的资源池管理的更多相关文章

  1. Hadoop - Ambari集群管理剖析

    1.Overview Ambari是Apache推出的一个集中管理Hadoop的集群的一个平台,可以快速帮助搭建Hadoop及相关以来组件的平台,管理集群方便.这篇博客记录Ambari的相关问题和注意 ...

  2. Ambari大数据的管理利器

    概述 一个完全开源的管理平台,用于供应,管理,监控和保护Apache Hadoop集群.Apache Ambari客户管理和操作Hadoop集群 Apache Ambari作为Hortonworks数 ...

  3. cocos2D-x 3.5 引擎解析之--引用计数(Ref),自己主动释放池(PoolManager),自己主动释放池管理器( AutoreleasePool)

    #include <CCRef.h> Ref is used for reference count manangement. If a classinherits from Ref. C ...

  4. Ambari Log Search

    文章作者:luxianghao 文章来源:http://www.cnblogs.com/luxianghao/p/8630195.html  转载请注明,谢谢合作. 免责声明:文章内容仅代表个人观点, ...

  5. kvm虚拟化管理平台WebVirtMgr部署-完整记录(1)

    公司机房有一台2U的服务器(64G内存,32核),由于近期新增业务比较多,测试机也要新增,服务器资源十分有限.所以打算在这台2U服务器上部署kvm虚拟化,虚出多台VM出来,以应对新的测试需求.当KVM ...

  6. 基于KVM、Xen、OpenVZ等虚拟化技术的WEB在线管理工具

    1.Proxmox proxmox是一个开源的虚拟化管理平台,支持集群管理和HA.在存储方面,proxmox除了支持常用的lvm,nfs,iscsi,还支持集群存储glusterfs和ceph,这也是 ...

  7. Ambari配置Hive,Hive的使用

    mysql安装,hive环境的搭建 ambari部署hadoop 博客大牛:董的博客 ambari使用 ambari官方文档 hadoop 2.0 详细配置教程 使用Ambari快速部署Hadoop大 ...

  8. 基于Ambari构建自己的大数据平台产品

    目前市场上常见的企业级大数据平台型的产品主流的有两个,一个是Cloudera公司推出的CDH,一个是Hortonworks公司推出的一套HDP,其中HDP是以开源的Ambari作为一个管理监控工具,C ...

  9. 小规模kvm宿主机管理-webvirtmgr安装

    1.前言WebVirtMgr是近两年来发展较快,比较活跃,非常清新的一个KVM管理平台,提供对宿主机和虚机的统一管理,它有别于kvm自带的图形管理工具(virtual machine manager) ...

随机推荐

  1. Latex排版全解【转载】

    Latex排版全解 https://www.cnblogs.com/jingwhale/p/4250296.html

  2. java实现同步的方法

    为何要实现同步 java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查),      将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前 ...

  3. Moore majority vote algorithm(摩尔投票算法)

    Boyer-Moore majority vote algorithm(摩尔投票算法) 简介 Boyer-Moore majority vote algorithm(摩尔投票算法)是一种在线性时间O( ...

  4. 关于YII2中编辑页面全局变量冲突问题

    今天做一编辑页面时被一个很小的问题困了许久.由于在YII2框架里高度集成了bootstrp框架,在做一个编辑的页面时出现了一个自定义的功能,自定义的字段非数据库表里的字段,所以需要在模型里单独声明一个 ...

  5. select 下拉框 设置值

    function setSelectOption(objSelect, targetValue){ if(objSelect){ var options = objSelect.options; if ...

  6. 图论_FatherChristmasFlymouse(Tarjan+dijkstra or spfa)

    堆优化Dij VS Spfa 堆优化Dij小胜一筹. 题目名字:Father Christmas flymouse (POJ 3160) 这题可以说是图论做的比较畅快的一题,比较综合,很想说一说. 首 ...

  7. Java IO操作——数据操作流DataOutputStream和DataInputStream的使用

    学习目标  掌握DataOutputStream和DataInputStream的作用 可以使用DataOutputStream和DataInputStream写入和读入数据 数据操作流 在io包中, ...

  8. 智课雅思词汇---二十三、动词性后缀-ate-fy-ish-ize

    智课雅思词汇---二十三.动词性后缀-ate-fy-ish-ize 一.总结 一句话总结: 1.-ate(differentiate,maturate)? 后缀:-ate ①[动词后缀] 表示做.造成 ...

  9. DDOS 攻击工具

    DDOS  攻击工具 使用github上的DDOS攻击工具 https://github.com/Ha3MrX/DDos-Attack 将python脚本拷贝到主机,使用 chmod +x ddos- ...

  10. HDU-2224-双调TSP

    双调tsp的模板题,暑假时看没看懂,现在很好理解方程. f[i][j]表示dis[1...i]+dis[1...j]的最短路径长度(max(i,j)之前的点全部经过且仅经过一次),f[i][j]=f[ ...