操作:
YARN→Config→Advanced→Schedule
 capacity-scheduler=null
yarn.scheduler.capacity.default.minimum-user-limit-percent=
yarn.scheduler.capacity.maximum-am-resource-percent=0.2
yarn.scheduler.capacity.maximum-applications=
yarn.scheduler.capacity.node-locality-delay=
yarn.scheduler.capacity.root.accessible-node-labels=*
yarn.scheduler.capacity.root.acl_administer_queue=*
yarn.scheduler.capacity.root.capacity=
yarn.scheduler.capacity.root.default.acl_administer_jobs=*
yarn.scheduler.capacity.root.default.acl_submit_applications=*
yarn.scheduler.capacity.root.default.capacity=
yarn.scheduler.capacity.root.default.maximum-capacity=
yarn.scheduler.capacity.root.default.state=RUNNING
yarn.scheduler.capacity.root.default.user-limit-factor=
yarn.scheduler.capacity.root.queues=Support,Marketing,Engineering
yarn.scheduler.capacity.root.Engineering.Development.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.Development.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.Development.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.Development.capacity=
yarn.scheduler.capacity.root.Engineering.Development.minimumaximum-capacity=
yarn.scheduler.capacity.root.Engineering.Development.state=RUNNING
yarn.scheduler.capacity.root.Engineering.Development.user-limit-factor=
yarn.scheduler.capacity.root.Engineering.QE.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.QE.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.QE.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.QE.capacity=
yarn.scheduler.capacity.root.Engineering.QE.maximum-capacity=
yarn.scheduler.capacity.root.Engineering.QE.state=RUNNING
yarn.scheduler.capacity.root.Engineering.QE.user-limit-factor=
yarn.scheduler.capacity.root.Engineering.acl_administer_jobs=*
yarn.scheduler.capacity.root.Engineering.acl_administer_queue=*
yarn.scheduler.capacity.root.Engineering.acl_submit_applications=*
yarn.scheduler.capacity.root.Engineering.capacity=
yarn.scheduler.capacity.root.Engineering.maximum-capacity=
yarn.scheduler.capacity.root.Engineering.queues=Development,QE
yarn.scheduler.capacity.root.Engineering.state=RUNNING
yarn.scheduler.capacity.root.Engineering.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.Advertising.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.Advertising.acl_administer_queue=*
yarn.scheduler.capacity.root.Marketing.Advertising.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.Advertising.capacity=
yarn.scheduler.capacity.root.Marketing.Advertising.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.Advertising.state=STOPPED
yarn.scheduler.capacity.root.Marketing.Advertising.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.Sales.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.Sales.acl_administer_queue=*
yarn.scheduler.capacity.root.Marketing.Sales.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.Sales.capacity=
yarn.scheduler.capacity.root.Marketing.Sales.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.Sales.minimum-user-limit-percent=
yarn.scheduler.capacity.root.Marketing.Sales.state=RUNNING
yarn.scheduler.capacity.root.Marketing.Sales.user-limit-factor=
yarn.scheduler.capacity.root.Marketing.acl_administer_jobs=*
yarn.scheduler.capacity.root.Marketing.acl_submit_applications=*
yarn.scheduler.capacity.root.Marketing.capacity=
yarn.scheduler.capacity.root.Marketing.maximum-capacity=
yarn.scheduler.capacity.root.Marketing.queues=Sales,Advertising
yarn.scheduler.capacity.root.Marketing.state=RUNNING
yarn.scheduler.capacity.root.Marketing.user-limit-factor=
yarn.scheduler.capacity.root.Support.Services.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.Services.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.Services.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.Services.capacity=
yarn.scheduler.capacity.root.Support.Services.maximum-capacity=
yarn.scheduler.capacity.root.Support.Services.minimum-user-limit-percent=
yarn.scheduler.capacity.root.Support.Services.state=RUNNING
yarn.scheduler.capacity.root.Support.Services.user-limit-factor=
yarn.scheduler.capacity.root.Support.Training.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.Training.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.Training.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.Training.capacity=
yarn.scheduler.capacity.root.Support.Training.maximum-capacity=
yarn.scheduler.capacity.root.Support.Training.state=RUNNING
yarn.scheduler.capacity.root.Support.Training.user-limit-factor=
yarn.scheduler.capacity.root.Support.acl_administer_jobs=*
yarn.scheduler.capacity.root.Support.acl_administer_queue=*
yarn.scheduler.capacity.root.Support.acl_submit_applications=*
yarn.scheduler.capacity.root.Support.capacity=
yarn.scheduler.capacity.root.Support.maximum-capacity=
yarn.scheduler.capacity.root.Support.queues=Training,Services
yarn.scheduler.capacity.root.Support.state=RUNNING
yarn.scheduler.capacity.root.Support.user-limit-factor=
yarn.scheduler.capacity.root.unfunded.capacity=
 
全靠手写了。
然后通过链接进入到resource manager页面,选择左侧链接,点击Scheduler,就可以看到这次添加的队列,support,marketing以及Engineering。
参考:

Ambari的资源池管理的更多相关文章

  1. Hadoop - Ambari集群管理剖析

    1.Overview Ambari是Apache推出的一个集中管理Hadoop的集群的一个平台,可以快速帮助搭建Hadoop及相关以来组件的平台,管理集群方便.这篇博客记录Ambari的相关问题和注意 ...

  2. Ambari大数据的管理利器

    概述 一个完全开源的管理平台,用于供应,管理,监控和保护Apache Hadoop集群.Apache Ambari客户管理和操作Hadoop集群 Apache Ambari作为Hortonworks数 ...

  3. cocos2D-x 3.5 引擎解析之--引用计数(Ref),自己主动释放池(PoolManager),自己主动释放池管理器( AutoreleasePool)

    #include <CCRef.h> Ref is used for reference count manangement. If a classinherits from Ref. C ...

  4. Ambari Log Search

    文章作者:luxianghao 文章来源:http://www.cnblogs.com/luxianghao/p/8630195.html  转载请注明,谢谢合作. 免责声明:文章内容仅代表个人观点, ...

  5. kvm虚拟化管理平台WebVirtMgr部署-完整记录(1)

    公司机房有一台2U的服务器(64G内存,32核),由于近期新增业务比较多,测试机也要新增,服务器资源十分有限.所以打算在这台2U服务器上部署kvm虚拟化,虚出多台VM出来,以应对新的测试需求.当KVM ...

  6. 基于KVM、Xen、OpenVZ等虚拟化技术的WEB在线管理工具

    1.Proxmox proxmox是一个开源的虚拟化管理平台,支持集群管理和HA.在存储方面,proxmox除了支持常用的lvm,nfs,iscsi,还支持集群存储glusterfs和ceph,这也是 ...

  7. Ambari配置Hive,Hive的使用

    mysql安装,hive环境的搭建 ambari部署hadoop 博客大牛:董的博客 ambari使用 ambari官方文档 hadoop 2.0 详细配置教程 使用Ambari快速部署Hadoop大 ...

  8. 基于Ambari构建自己的大数据平台产品

    目前市场上常见的企业级大数据平台型的产品主流的有两个,一个是Cloudera公司推出的CDH,一个是Hortonworks公司推出的一套HDP,其中HDP是以开源的Ambari作为一个管理监控工具,C ...

  9. 小规模kvm宿主机管理-webvirtmgr安装

    1.前言WebVirtMgr是近两年来发展较快,比较活跃,非常清新的一个KVM管理平台,提供对宿主机和虚机的统一管理,它有别于kvm自带的图形管理工具(virtual machine manager) ...

随机推荐

  1. 使用buildroot创建自己的交叉编译工具链【转】

    本文转载自:https://blog.csdn.net/linczone/article/details/45894181 使用buildroot创建自己的交叉编译工具链 关键字:buildroot ...

  2. AMD C1E SUPPORT

    •C1E是一种电源管理状态,它可以让处理器节能不限于处理器内核.在CIE状态,可以通过降低内存时钟速度.关闭HT技术,来降低处理器能耗.这种新功能对于12核的处理器极其重要,因为这种处理器在设计上既增 ...

  3. CodeChef CHEFSOC2 Chef and Big Soccer 水dp

    Chef and Big Soccer   Problem code: CHEFSOC2 Tweet     ALL SUBMISSIONS All submissions for this prob ...

  4. Android 必须知道2018年流行的框架库及开发语言,看这一篇就够了!

    导语 2017 已经悄悄的走了,2018 也已经匆匆的来了,我们在总结过去的同时,也要展望一下未来,来规划一下今年要学哪些新技术.这几年优秀Android的开源库不断推出,新技术层出不穷,需要我们不断 ...

  5. javascript练习题(2):变量作用域

    1. 外层变量在内部可以找到,反之找不到 以下看个案例: var a=10; function aaa(){ alert(a); } function bbb(){ var a=20; aaa(); ...

  6. Linux软件安装-----apache安装

    一. ./configure --prefix=/usr/local/http2 \ --enable-modules=all \ --enble-mods-shared=all \ 开启模块共享: ...

  7. viewport简介

    Viewport的用处:手机拥有了浏览器的初期,人们并没有专门为移动设备设计页面,造成的直接结果就是,访问的页面是直接将电脑页面进行缩放,操作起来有诸多不便,viewport就是用来解决这个问题的 1 ...

  8. B/S,C/S简单介绍

    B/S,C/S 架构 硬件环境不同:C/S 一般建立在专用的网络上, 小范围里的网络环境, 局域网之间再通过专门服务器提供连接和数据交换服务. B/S 建立在广域网之上的, 不必是专门的网络硬件环境, ...

  9. HDU 1856 并查集

    http://acm.hdu.edu.cn/showproblem.php?pid=1856 More is better Time Limit: 5000/1000 MS (Java/Others) ...

  10. Cassandra key说明——Cassandra 整体数据可以理解成一个巨大的嵌套的Map Map<RowKey, SortedMap<ColumnKey, ColumnValue>>

    Cassandra之中一共包含下面5种Key: Primary Key Partition Key Composite Key Compound Key Clustering Key 首先,Prima ...