设第i个人给了第i+1个人mi个糖果(可以为负),因为最后每个人的糖果都会变成sum/n。

可以得到方程组 mi-mi+1=a[i+1]-sum/n.(1<=i<=n).

把方程组化为mn组成的形式,最后的结果就是求min(abs(mn)+abs(mn-a[i+1]+sum/n)....)。可以看出这是一个分段函数。

且函数最值在mn取中位数的地方。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF (LL)<<
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int a[N], b[N];
LL sum[N]; int main()
{
int n;
LL ave=, ans=;
scanf("%d",&n);
FOR(i,,n) scanf("%d",a+i), ave+=a[i];
ave/=n;
FOR(i,,n) a[i]-=ave;
FOR(i,,n) sum[i]=a[i]+sum[i-];
sort(sum+,sum+n+);
LL t=sum[(+n)>>];
FOR(i,,n) ans+=abs(t-sum[i]);
printf("%lld\n",ans);
return ;
}

BZOJ 1045 糖果传递(思维)的更多相关文章

  1. [BZOJ]1045 糖果传递(HAOI2008)

    放一道数学题. Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n<=1000000,表示 ...

  2. bzoj 1045糖果传递 数学贪心

    首先我们假设平均数为ave 那么对于第1个人,我们假设他给第N个人K个糖果,第2个人给1,第3个人给2,第n个人给第n-1个人 那么对于第1个人给完n,第2个人给完1,第一个人不会再改变糖果数了,所以 ...

  3. BZOJ 1045 糖果传递

    奇怪的式子.最后发现取中位数. #include<iostream> #include<cstdio> #include<cstring> #include< ...

  4. 【BZOJ】【1045/1465】【HAOI2008】糖果传递

    思路题/神奇的转化…… orz hzwer 或许这个思路可以从单行而非环形的递推中找到?(单行的时候,从左往右直接递推即可…… 感觉好神奇>_<脑残患者想不出…… P.S.话说在$n\le ...

  5. BZOJ 1045: [HAOI2008] 糖果传递 数学

    1045: [HAOI2008] 糖果传递 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1045 Description 有n个小朋友坐 ...

  6. 【BZOJ 1045】 1045: [HAOI2008] 糖果传递

    1045: [HAOI2008] 糖果传递 Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n& ...

  7. bzoj 1045: [HAOI2008] 糖果传递 贪心

    1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1812  Solved: 846[Submit][Stat ...

  8. [BZOJ 1045] [HAOI2008] 糖果传递

    题目链接:BZOJ 1045 Attention:数据范围中 n <= 10^5 ,实际数据范围比这要大,将数组开到 10^6 就没有问题了. 我们先来看一下下面的这个问题. 若 n 个人坐成一 ...

  9. 【BZOJ-3293&1465&1045】分金币&糖果传递×2 中位数 + 乱搞

    3293: [Cqoi2011]分金币 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 854  Solved: 476[Submit][Status] ...

随机推荐

  1. 成都Uber优步司机奖励政策(2月16日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. 佛山Uber优步司机奖励政策(12月21日到12月27日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. springboot之RMI的使用

    1.RMI 指的是远程方法调用 (Remote Method Invocation).它是一种机制,能够让在某个 Java虚拟机上的对象调用另一个 Java 虚拟机中的对象上的方法.可以用此方法调用的 ...

  4. 「日常训练」Kefa and Company(Codeforces Round #321 Div. 2 B)

    题意与分析(CodeForces 580B) \(n\)个人,告诉你\(n\)个人的工资,每个人还有一个权值.现在从这n个人中选出m个人,使得他们的权值之和最大,但是对于选中的人而言,其他被选中的人的 ...

  5. Qt官方开发环境生成的exe发布方式

    本来想自己写一个打包程序的文章了,但是我发现了宝贝,在这里,大神写的比我牛逼的多了,这里做一下搬运工 一是为了方便大家 二是为了以后方便自己找 原文链接:http://tieba.baidu.com/ ...

  6. 【SpringCloud】第七篇: 高可用的分布式配置中心(Spring Cloud Config)

    前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...

  7. Java学习 · 初识 面向对象深入一

    面向对象深入 1.面向对象三大特征 a) 继承 inheritance 子类可以从父类继承属性和方法 子类可以提供自己的属性方法 b) 封装 encapsulation 对外隐藏某些属性和方法 对外公 ...

  8. Python基础 之 数据类型

    数据类型 一.运算符 算数运算a = 10 * 10赋值运算a = a + 1 a+=1 布尔值:True 真 False 假 if True: pass while True: pass v = n ...

  9. vim常用命令—撤销与反撤销

    命令模式下(即按ESC后的模式) u 撤销 Ctrl r (组合键) 反撤销<后悔撤销>

  10. Ubuntu16.04安装truffle时的一些错误

    1.使用truffle时出现 Error: /usr/bin/env: node: 没有那个文件或目录 1.如果是用sudo apt-get install nodejs命令安装的nodejs, ub ...