传送门

Description

今天是小Z的生日,同学们为他带来了一块蛋糕。这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值。

小Z作为寿星,自然希望吃到的第一块蛋糕的幸运值总和最大,但小Z最多又只能吃M小块(M≤N)的蛋糕。

吃东西自然就不想思考了,于是小Z把这个任务扔给了学OI的你,请你帮他从这N小块中找出连续的k块蛋糕(k≤M),使得其上的幸运值最大。

Input

输入文件cake.in的第一行是两个整数N,M。分别代表共有N小块蛋糕,小Z最多只能吃M小块。

第二行用空格隔开的N个整数,第i个整数Pi代表第i小块蛋糕的幸运值。

Output

输出文件cake.out只有一行,一个整数,为小Z能够得到的最大幸运值。

Sample Input_1

    

Sample Output_1


Sample Input_2

 -  -  -

Sample Output_2


Hint

N≤500000,|Pi|≤500。 答案保证在2^31-1之内。

Solution

  考虑暴力做法,可以O(n2)枚举左右端点,O(n)累加区间和

  发现O(n)的计算可以被前缀和优化掉。

  继续考虑,求长度不超过M的区间和最大的区间,则ans=max{s[i]-s[j-1]|i-(j-1)<=m}。

  发现s[i]是固定的,那么ans=s[i]-min{s[j-1]|i-(j-1)<=m}。

  至此,由于j的位置单调,所以可以进行单调队列优化。复杂度将至O(n)。可以通过本题。

Code

#include<cstdio>
#define maxn 500010 inline void qr(int &x) {
char ch=getchar();bool f=false;
while(ch>''||ch<'') {
if(ch=='-') f=true;
ch=getchar();
}
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
if(f) x=-x;
} inline int max(const int &a,const int &b) {if(a>b)return a;else return b;}
inline int min(const int &a,const int &b) {if(a<b)return a;else return b;}
inline int abs(const int &x) {if(x>=) return x;else return -x;} inline void swap(int &a,int &b) {
int temp=a;a=b;b=temp;
} int n,m,MU[maxn],sum[maxn];
int que[maxn],front,end=-,ans=-; int main() {
qr(n);qr(m);for(int i=;i<=n;++i) {qr(MU[i]);sum[i]=sum[i-]+MU[i];}
for(int i=;i<=n;++i) {
while(front<=end&&i-que[front]>m) ++front;
int &st=sum[i];
while(front<=end&&sum[que[end]]>=st) --end;
que[++end]=i;
ans=max(ans,st-sum[que[front]]);
}
printf("%d\n",ans);
return ;
}

【单调队列】【P1714】 切蛋糕的更多相关文章

  1. 洛谷 P1714 切蛋糕 单调队列

    这个题比较显然,要用前缀和来做.但只用前缀和是过不去的,会TLE,所以需要进行优化. 对于每个前缀和数组 b 中的元素,都可以找到以 b[i] 结尾的子段最大值 p[i],显然,最终的 ans 就是 ...

  2. 洛谷 P1714 切蛋糕 题解

    P1714 切蛋糕 题目描述 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值. 小Z作为寿星,自然希望吃到的第一块蛋糕的幸运 ...

  3. 【洛谷】【动态规划+单调队列】P1714 切蛋糕

    [题目描述:] 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值. 小Z作为寿星,自然希望吃到的第一块蛋糕的幸运值总和最大,但 ...

  4. luogu P1714 切蛋糕 单调队列

    单调队列傻题. 考虑以 $i$ 结尾的答案 : $max(sumv_{i}-sumv_{j}),j \in [i-m,i-1]$ ($sumv_{i}$ 为前缀和) 稍微搞一搞,发现 $sumv_{i ...

  5. P1714 切蛋糕 dp+单调队列

    题意: 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪露诺决定到 ...

  6. 洛谷P1714 切蛋糕(单调队列)

    先放代码...... 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N=5e5+10,M=0x3f3f3f3f; ...

  7. 洛谷—— P1714 切蛋糕

    https://www.luogu.org/problem/show?pid=1714 题目描述 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每 ...

  8. P1714切蛋糕(不定区间最值)

    题面 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值. 小Z作为寿星,自然希望吃到的第一块蛋糕的幸运值总和最大,但小Z最多又 ...

  9. [洛谷P1714]切蛋糕

    题目大意:给你n个整数,求出其中长度不超过m的最大字段和. 题解:单调队列维护前缀和最小值,然后用当前值减去当前有效最小值即可 C++ Code: #include<cstdio> usi ...

  10. 洛谷P1714切蛋糕

    题目 该题目就是求这n个数的前缀和所组成的数组的所有子区间的左端点和右端点相差不超过m,且他们的前缀和差最大,求出这个最大值即可. 而朴素算法肯定会T,而我们发现如果前缀和最大的话,则前缀和的值一定是 ...

随机推荐

  1. android自动化のadb常用命令(不定期更新)

    1. adb devices 执行结果是adb为每一个设备输出以下状态信息:序列号(serialNumber) — 由adb创建的使用控制台端口号的用于唯一标识一个模拟器或手机设备的字符串,格式是 & ...

  2. Unity编辑器 - Undo的坑

    Unity编辑器 - Undo的坑 编辑器通过脚本中改变值,Undo.RecordObject可能会无效,应该使用: Undo.RegisterCompleteObjectUndo(Object ob ...

  3. (转载)Unity3d中的属性(Attributes)整理

    附加: float字段检视面板修改:[Range(1,10)] 对属性进行分组:[Header("xxx")] 工具栏中调用方法,类文件需在Editor文件夹中:[MenuIte( ...

  4. NOIP2012 普及组真题 4.13校模拟

    考试状态: 我今天抽签看了洛谷的… 这我能怂???凶中带吉,我怕考试??我!不!怕! 看着整个机房的男同学们,我明白我是不会触发我的忌了.很好,开刷. A. [NOIP2012普及组真题] 质因数分解 ...

  5. 【转载】java byte转十六进制

    public static String bytes2HexString(byte[] b) { String ret = ""; for (int i = 0; i < b ...

  6. Python中的__future__

    在Python中,你如果在某一个版本的Python想使用未来版本中的功能,可以使用如下语法实现: from __future__ import futurename 这条语句必须放在module文件的 ...

  7. php5.4以上运行yii框架出现问题的解决方法

    Ubuntu Server 下安装 Mcrypt Php Extension http://blog.archean.me/2013/10/22/install-mcrypt-php-extensio ...

  8. 20145214实验一 Java开发环境的熟悉

    20145214实验一 Java开发环境的熟悉 使用JDK编译.运行简单的java程序 命令行下程序开发 在命令行下建立20145214实验目录,进入该目录后创建exp1目录. 把代码保存到exp1目 ...

  9. Android 网络编程 API笔记 - java.net 包 权限 地址 套接字 相关类 简介

    Android 网络编程相关的包 : 9 包, 20 接口, 103 类, 6 枚举, 14异常; -- Java包 : java.net 包 (6接口, 34类, 2枚举, 12异常); -- An ...

  10. 第一、二章——Python简介与Python基础

    前言:<Data Wrangling with Python>这本书主要是讲使用Pyhon来处理各种类型保存的数据的. 第一章:Python简介 1.版本选择 本书选择的Python版本是 ...