[学习笔记]min-max容斥
min-max容斥
就是max(a,b)=min(a)+min(b)-min(a,b)
max(a,b,c)=a+b+c-min(a,b)-min(a,c)-min(b,c)+min(a,b,c)
....
为什么这样做?
有的时候min要好算很多
期望的线性
所以可以直接套期望
然后例题:
[HAOI2015]按位或
推广
from:在Ta的博客查看
max_k(S)表示S中第k大
依然可以套期望:
[学习笔记]min-max容斥的更多相关文章
- 【学习笔记】Min-max 容斥
经常和概率期望题相结合. 对于全序集合 \(S\),有: \[\max S=\sum\limits_{T\subseteq S,T\not=\varnothing}(-1)^{\vert T\vert ...
- 快速沃尔什变换 (FWT)学习笔记
证明均来自xht37 的洛谷博客 作用 在 \(OI\) 中,\(FWT\) 是用于解决对下标进行位运算卷积问题的方法. \(c_{i}=\sum_{i=j \oplus k} a_{j} b_{k} ...
- min-max 容斥
$\min - \max$ 容斥 Part 1 对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1 ...
- Min-max 容斥与 kth 容斥
期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...
- min-max容斥学习笔记
min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...
- [总结] Min-Max容斥学习笔记
min-max 容斥 给定集合 \(S\) ,设 \(\max(S)\) 为 \(S\) 中的最大值,\(\min(S)\) 为 \(S\) 中的最小值,则: \[\max(S)=\sum_{T\in ...
- MinMax 容斥 学习笔记
基本形式 \[ \max(S) = \sum_{T\subseteq S, T \neq \varnothing} (-1)^{|T|-1}\min(T) \] 证明 不提供数学证明. 简要讲一下抽象 ...
- $Min\_25$筛学习笔记
\(Min\_25\)筛学习笔记 这种神仙东西不写点东西一下就忘了QAQ 资料和代码出处 资料2 资料3 打死我也不承认参考了yyb的 \(Min\_25\)筛可以干嘛?下文中未特殊说明\(P\)均指 ...
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
随机推荐
- The 2018 ACM-ICPC Asia Qingdao Regional Contest K XOR Clique
K XOR Clique BaoBao has a sequence a1,a2,...,an. He would like to find a subset S of {1,2,. ...
- PyMySQL连接MySQL数据库
首先, 添加PyMySQL模块: 代码: import pymysql db = pymysql.connect(host="localhost", user="root ...
- SpringMVC+mybatis+maven+Ehcache缓存实现
所谓缓存,就是将程序或系统经常要调用的对象存在内存中,以便其使用时可以快速调用,不必再去创建新的重复的实例.这样做可以减少系统开销,提高系统效率. 缓存主要可分为二大类: 一.通过文件缓存,顾名思义文 ...
- go通过第三方库 mahonia gbk 转utf8
go get github.com/axgle/mahonia dec := mahonia.NewDecoder("GBK")ret:=dec.ConvertString(res ...
- 使用Zabbix监控rabbitmq服务
添加rabbitmq脚本 [root@controller rabbitmq]# cd /etc/zabbix/script/rabbitmq [root@controller rabbitmq]# ...
- 剑指offer-从上往下打印二叉树22
题目描述 从上往下打印出二叉树的每个节点,同层节点从左至右打印. class Solution: # 返回从上到下每个节点值列表,例:[1,2,3] def PrintFromTopToBottom( ...
- 欢迎来怼——第14次Scrum会议(10/26)
一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,冉华 小组照片 二.开会信息 时间:2017/10/26 17:00~17:13(总计13min).地点:计 ...
- Daily Scrum 9
今天我们的开会内容有一下部分: Part 1:讨论当前遇到的困难 Part 2:明天的任务分工 ◆Part 1 当前的困难 由于之前我们得到的学长的文件并不完整,导致我们无法打开,在和老师进行积极沟通 ...
- iOS- <项目笔记>UI控件常见属性总结
1.UIView // 如果userInteractionEnabled=NO,不能跟用户交互 @property(nonatomic,getter=isUserInteractionEnabled) ...
- c++设计模式----装饰模式
前言 在实际开发时,你有没有碰到过这种问题:开发一个类,封装了一个对象的核心操作,而这些操作就是客户使用该类时都会去调用的操作:而有一些非核心的操作,可能会使用,也可能不会使用:现在该怎么办呢? 将这 ...