问题描述

给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。

输入格式

第一行两个整数n, m。

接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。

输出格式
共n-1行,第i行表示1号点到i+1号点的最短路。
样例输入
3 3
1 2 -1
2 3 -1
3 1 2
样例输出
-1
-2
数据规模与约定

对于10%的数据,n = 2,m = 2。

对于30%的数据,n <= 5,m <= 10。

对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。

题解: 前向星 存图 SPFA

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<queue>
using namespace std;
struct node
{
int next;
int to;
int we;
} edge[];
int nedge=;
int pre[],vis[],d[];
int n,m;
int aa,bb,cc;
int now;
queue<int>q;
void add (int a,int b ,int c)
{
nedge++;
edge[nedge].to=b;
edge[nedge].we=c;
edge[nedge].next=pre[a];
pre[a]=nedge;
}
void spfa()
{
for(int i=;i<=n;i++)
{
vis[i]=;
d[i]=0xfffffff;
}
q.push();
vis[]=;
d[]=;
while(!q.empty())
{
now=q.front();
q.pop();
vis[now]=;
for(int i=pre[now];i!=;i=edge[i].next)
{
int mm=edge[i].to;
if(d[now]+edge[i].we<d[mm])
{
d[mm]=d[now]+edge[i].we;
if(!vis[mm])
{
vis[mm]=;
q.push(mm);
}
}
}
}
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=;i<=n;i++)
{
pre[i]=;
}
memset(edge,,sizeof(edge));
for(int i=;i<=m;i++)
{
scanf("%d %d %d",&aa,&bb,&cc);
add(aa,bb,cc);
}
spfa();
for(int i=;i<=n;i++)
printf("%d\n",d[i]);
return ;
}

蓝桥杯 最短路 spfa的更多相关文章

  1. Java实现蓝桥杯 最短路

    问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个 ...

  2. 2021蓝桥杯省赛B组(C/C++)E.路径【最短路DP】

    2021蓝桥杯省赛B组题目(C/C++)E.路径 最短路径, 因为变化情况比较多, 所以开始想的是深搜, 但是太慢了, 跑不出来, 后来就想着优化一下, 有的地方到另一个地方可能会考虑很多遍, 于是考 ...

  3. 第九届蓝桥杯国赛+第二天的第11届acm省赛的总结

    第九届蓝桥杯国赛+第二天的第11届acm省赛的总结 25号坐的去北京的火车,10个小时的火车,然后挤了快两个小时的地铁,最终达到了中国矿业大学旁边的订的房间.12个小时很难受,晕车症状有点严重,吃了快 ...

  4. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  5. 2012年 蓝桥杯预赛 java 本科 题目

    2012年 蓝桥杯预赛 java 本科 考生须知: l  考试时间为4小时. l  参赛选手切勿修改机器自动生成的[考生文件夹]的名称或删除任何自动生成的文件或目录,否则会干扰考试系统正确采集您的解答 ...

  6. 蓝桥杯历届试题 地宫取宝 dp or 记忆化搜索

    问题描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被带到地宫的入口,国王要求他只能向右或向下行走. 走 ...

  7. 蓝桥杯---数独(模拟 || dfs)

    [编程题](满分33分) "数独"是当下炙手可热的智力游戏.一般认为它的起源是"拉丁方块",是大数 学家欧拉于1783年发明的. 如图[1.jpg]所示:6x6 ...

  8. 蓝桥杯---剪格子(DFS&BFS)(小总结)

    问题描述 如下图所示,3 x 3 的格子中填写了一些整数. +--*--+--+ |10* 1|52| +--****--+ |20|30* 1| *******--+ | 1| 2| 3| +--+ ...

  9. 蓝桥杯--Quadratic Equation

    蓝桥杯--Quadratic Equation 问题描述 求解方程ax2+bx+c=0的根.要求a, b, c由用户输入,并且可以为任意实数. 输入格式:输入只有一行,包括三个系数,之间用空格格开. ...

随机推荐

  1. JavaWeb--------JSP语法基础学习(特别适合入门)

    准备工作: 需要Tomcat8.0,MyEclipse,JDK JSP是一种运行在服务器端的脚本语言,JSP页面又是基于HTML网页的程序,它是Java Web 开发技术的基础. 基本内容: JSP页 ...

  2. informix如何查询第一条记录

    1.select first 1 * from shop; 正序查询第一条数据 2.select first 1 * from shop order by create_time desc; 按创建时 ...

  3. ELK部署方法

    最近经理开会说公司要安装ELK日志管理让我们搭建ELK,下面是我搭建步骤和流程,用三台机测试机器搭建的. 软件包我都 给你们放/usr/local/src/elk目录下安装目录都放在/usr/loca ...

  4. KVM存储虚拟化---玩转openstack

    KVM 的存储虚拟化是通过存储池(Storage Pool)和卷(Volume)来管理的. Storage Pool 是宿主机上可以看到的一片存储空间,可以是多种类型,后面会详细讨论.Volume 是 ...

  5. allocator类

    一.动态数组 [new的局限性] new将内存分配和对象构造组合在一起,同样delete将对象析构和内存释放组合在一起 我们分配单个对象时,通常希望将内存分配和对象初始化组合在一起(我们知道对象应有什 ...

  6. asp.net .net4.0使用异步编程

    "; Action<object> ac = (object obj) => { Debug.WriteLine("睡眠开始:" + DateTime. ...

  7. LintCode-381.螺旋矩阵 II

    螺旋矩阵 II 给你一个数n生成一个包含1-n^2的螺旋形矩阵 样例 n = 3 矩阵为 [     [ 1, 2, 3 ],     [ 8, 9, 4 ],     [ 7, 6, 5 ] ] 标 ...

  8. iOS开发开辟线程总结--NSThread

    1.简介: 1.1 iOS有三种多线程编程的技术,分别是: 1..NSThread 2.Cocoa NSOperation (iOS多线程编程之NSOperation和NSOperationQueue ...

  9. windows批处理学习(for和字符串)---03

    [1]for命令简介 先把for循环与for命令类比一下,这样学习理解快. for 循环语句,一般格式如下: 1 for (表达式1;表达式2;表达式3) 2 { 3 循环体; 4 } 1. 表达式1 ...

  10. Ubuntu安装配置JDK、Tomcat、SVN服务器

    一.配置jdk 1.下载JDK http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html 注:笔者是直 ...