问题描述

给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。

输入格式

第一行两个整数n, m。

接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。

输出格式
共n-1行,第i行表示1号点到i+1号点的最短路。
样例输入
3 3
1 2 -1
2 3 -1
3 1 2
样例输出
-1
-2
数据规模与约定

对于10%的数据,n = 2,m = 2。

对于30%的数据,n <= 5,m <= 10。

对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。

题解: 前向星 存图 SPFA

  1. #include<iostream>
  2. #include<cstring>
  3. #include<cstdio>
  4. #include<map>
  5. #include<queue>
  6. using namespace std;
  7. struct node
  8. {
  9. int next;
  10. int to;
  11. int we;
  12. } edge[];
  13. int nedge=;
  14. int pre[],vis[],d[];
  15. int n,m;
  16. int aa,bb,cc;
  17. int now;
  18. queue<int>q;
  19. void add (int a,int b ,int c)
  20. {
  21. nedge++;
  22. edge[nedge].to=b;
  23. edge[nedge].we=c;
  24. edge[nedge].next=pre[a];
  25. pre[a]=nedge;
  26. }
  27. void spfa()
  28. {
  29. for(int i=;i<=n;i++)
  30. {
  31. vis[i]=;
  32. d[i]=0xfffffff;
  33. }
  34. q.push();
  35. vis[]=;
  36. d[]=;
  37. while(!q.empty())
  38. {
  39. now=q.front();
  40. q.pop();
  41. vis[now]=;
  42. for(int i=pre[now];i!=;i=edge[i].next)
  43. {
  44. int mm=edge[i].to;
  45. if(d[now]+edge[i].we<d[mm])
  46. {
  47. d[mm]=d[now]+edge[i].we;
  48. if(!vis[mm])
  49. {
  50. vis[mm]=;
  51. q.push(mm);
  52. }
  53. }
  54. }
  55. }
  56. }
  57. int main()
  58. {
  59. scanf("%d %d",&n,&m);
  60. for(int i=;i<=n;i++)
  61. {
  62. pre[i]=;
  63. }
  64. memset(edge,,sizeof(edge));
  65. for(int i=;i<=m;i++)
  66. {
  67. scanf("%d %d %d",&aa,&bb,&cc);
  68. add(aa,bb,cc);
  69. }
  70. spfa();
  71. for(int i=;i<=n;i++)
  72. printf("%d\n",d[i]);
  73. return ;
  74. }

蓝桥杯 最短路 spfa的更多相关文章

  1. Java实现蓝桥杯 最短路

    问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个 ...

  2. 2021蓝桥杯省赛B组(C/C++)E.路径【最短路DP】

    2021蓝桥杯省赛B组题目(C/C++)E.路径 最短路径, 因为变化情况比较多, 所以开始想的是深搜, 但是太慢了, 跑不出来, 后来就想着优化一下, 有的地方到另一个地方可能会考虑很多遍, 于是考 ...

  3. 第九届蓝桥杯国赛+第二天的第11届acm省赛的总结

    第九届蓝桥杯国赛+第二天的第11届acm省赛的总结 25号坐的去北京的火车,10个小时的火车,然后挤了快两个小时的地铁,最终达到了中国矿业大学旁边的订的房间.12个小时很难受,晕车症状有点严重,吃了快 ...

  4. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  5. 2012年 蓝桥杯预赛 java 本科 题目

    2012年 蓝桥杯预赛 java 本科 考生须知: l  考试时间为4小时. l  参赛选手切勿修改机器自动生成的[考生文件夹]的名称或删除任何自动生成的文件或目录,否则会干扰考试系统正确采集您的解答 ...

  6. 蓝桥杯历届试题 地宫取宝 dp or 记忆化搜索

    问题描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被带到地宫的入口,国王要求他只能向右或向下行走. 走 ...

  7. 蓝桥杯---数独(模拟 || dfs)

    [编程题](满分33分) "数独"是当下炙手可热的智力游戏.一般认为它的起源是"拉丁方块",是大数 学家欧拉于1783年发明的. 如图[1.jpg]所示:6x6 ...

  8. 蓝桥杯---剪格子(DFS&BFS)(小总结)

    问题描述 如下图所示,3 x 3 的格子中填写了一些整数. +--*--+--+ |10* 1|52| +--****--+ |20|30* 1| *******--+ | 1| 2| 3| +--+ ...

  9. 蓝桥杯--Quadratic Equation

    蓝桥杯--Quadratic Equation 问题描述 求解方程ax2+bx+c=0的根.要求a, b, c由用户输入,并且可以为任意实数. 输入格式:输入只有一行,包括三个系数,之间用空格格开. ...

随机推荐

  1. Struts2(九.利用layer组件实现图片显示功能)

    1.layer前端组件介绍 layer是一款口碑极佳的web弹层组件,她具备全方位的解决方案,致力于服务各个水平段的开发人员,您的页面会轻松地拥有丰富而友好的操作体验. http://sentsin. ...

  2. STL之--插入迭代器(back_inserter,inserter,front_inserter的区别)

    除了普通迭代器,C++标准模板库还定义了几种特殊的迭代器,分别是插入迭代器.流迭代器.反向迭代器和移动迭代器,定义在<iterator>头文件中,下面主要介绍三种插入迭代器(back_in ...

  3. loadrunner_遇到cookie接口_3种应对方法

    方法一:是调用登录接口,在调用登录后的接口 方法二:手动储存cookie,写死cookie 方法一:提前登录收集cookie,写成参数化文件 方法一,案例(就是先登录,再写登录后的接口): 注:use ...

  4. spark dataset join 使用方法java

    dataset<Row> df1,df2,df3 //该方法可以执行成功 df3= df1.join(df2,"post_id").selectExpr("h ...

  5. Memcache的客户端连接系列(二) Python

    关键词: Memcached   Python 客户端 声明:本文并非原创,转自华为云帮助中心的分布式缓存服务(Memcached)的用户指南.客户端连接方法通用,故摘抄过来分享给大家. Python ...

  6. 特殊符号 & 以太坊

    &表示取二进制的末尾 &1表示如果末尾是奇数和偶数两种情况 0 偶数 1奇数 举例子: int a=1;int p=&a; 其中,p是指针,&a就是将a在内存中的实际地 ...

  7. c# html 导出word

    [CustomAuthorize]        public FileResult ExportQuestionCenterWord(SearchBaseQuestion search)       ...

  8. POJ 3498 March of the Penguins(网络最大流)

    Description Somewhere near the south pole, a number of penguins are standing on a number of ice floe ...

  9. 硬件原理图Checklist检查表(通用版)

    类别 描述 检视规则 原理图需要进行检视,提交集体检视是需要完成自检,确保没有低级问题. 检视规则 原理图要和公司团队和可以邀请的专家一起进行检视. 检视规则 第一次原理图发出进行集体检视后所有的修改 ...

  10. android平台蓝牙编程(转)

    http://blog.csdn.net/pwei007/article/details/6015907 Android平台支持蓝牙网络协议栈,实现蓝牙设备之间数据的无线传输. 本文档描述了怎样利用a ...