洛谷P1730最小密度路径
首先理解题目,究其本质就是一个最短路问题,而且数据范围贼水,用floyd完全没问题,但是题目有变化,要求出路径边权值与边数之比,这里就可以考虑在把floyd中的二维数组变为三维,f[ i ][ j ][ l ]表示从 i 到 j 经过 l 条边的情况,而且因为是有向图,所以从一点到达另一点经过的边数最多为n-1条(除非数据有问题),做完floyd之后就从1~n-1枚举边数,然后比较得出ans即可,不过要注意,对于f[ s ][ t ][ l ],某些 l 的情况是不存在的,所以别忘了赋inf初值。下面是代码:
#include<bits/stdc++.h>
#define inf 1e9
using namespace std;
int n,m,q;
int dis[][][];
int main()
{
//freopen("path.in","r",stdin);
//freopen("path.out","w",stdout);
scanf("%d%d",&n,&m);
for(int l=;l<=m;l++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j][l]=inf;
for(int i=;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(dis[x][y][]>z)
dis[x][y][]=z;
}
for(int l=;l<=m;l++)
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j][l]=min(dis[i][j][l],dis[i][k][l-]+dis[k][j][]);
scanf("%d",&q);
while(q--){
int x,y;
double ans=inf,now=inf;
scanf("%d%d",&x,&y);
for(int l=;l<=n;l++)
{
if(dis[x][y][l]<inf)
now=(double)dis[x][y][l]/(double)l;
ans=min(ans,now);
}
if(ans==inf)printf("OMG!\n");
else printf("%.3lf\n",ans);
}
return ;
}
洛谷P1730最小密度路径的更多相关文章
- [洛谷P1730] 最小密度路径
类型:Floyd 传送门:>Here< 题意:定义一条路径密度 = 该路径长度 / 边数.给出一张$DAG$,现有$Q$次询问,每次给出$X,Y$,问$X,Y$的最小密度路径($N \le ...
- 洛谷P1730 最小密度路径(floyd)
题意 题目链接 Sol zz floyd. 很显然的一个dp方程\(f[i][j][k][l]\)表示从\(i\)到\(j\)经过了\(k\)条边的最小权值 可以证明最优路径的长度一定\(\leqsl ...
- Luogu P1730 最小密度路径(最短路径+dp)
P1730 最小密度路径 题面 题目描述 给出一张有 \(N\) 个点 \(M\) 条边的加权有向无环图,接下来有 \(Q\) 个询问,每个询问包括 \(2\) 个节点 \(X\) 和 \(Y\) , ...
- 【洛谷P1730】最小密度路径
题目大意:给定一个 N 个点,M 条边的有向图,现有 Q 个询问,每次询问 X 到 Y 的最小密度路径是多少.最小密度路径的定义是路径长度除以路径边数. 题解:利用矩阵乘法,可以预处理出从 X 到 Y ...
- 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...
- [Luogu 1730]最小密度路径
Description 给出一张有N个点M条边的加权有向无环图,接下来有Q个询问,每个询问包括2个节点X和Y,要求算出从X到Y的一条路径,使得密度最小(密度的定义为,路径上边的权值和除以边的数量). ...
- 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划
洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...
- Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)
题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...
- 洛谷P2764 最小路径覆盖问题
有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...
随机推荐
- emoji表情处理研究
http://blog.csdn.net/qdkfriend/article/details/7576524
- redhat 7 安装oracle12.1
https://oracle-base.com/articles/12c/oracle-db-12cr1-installation-on-oracle-linux-7 一定要配置yum本地源 ...
- Item 4 ----通过私有构造器强化不可实例化的能力
场景: 在创建工具类的时候,大部分是无需实例化的,实例化对它们没有意义.在这种情况下,创建的类,要确保它是不可以实例化的. 存在问题: 在创建不可实例化的类时,虽然没有定义构造器.但是,客户端在使 ...
- 【bug】vue-cli 3.0报错的解决办法
先上bug图片 bug说明:初装vue_cli3.0写了个组件,运行错误,显示如图, 代码提示:[Vue warn]: You are using the runtime-only build of ...
- node遇到的一些坑,npm无反应,cordova安装以后显示不是内部或外部命令
1.输入npm -v 以后一直无反应 C:\Users\用户名 目录下找到 .npmrc文件,删除以后,执行npm -v顺利显示版本号 2.安装cordova以后一直报错,不是内部或外部命令也不是可运 ...
- perl6文件操作
use v6; #perl6中读取文件方法 #:r 只读, :w 只写, :rw 读写, :a 追加 my $fp = open 'filename.txt', :rw; for $fp.^metho ...
- 关于EditText.setText()无法显示的问题
将EditText在初始化后调用EditText.setSaveEnabled(false); 让Android 系统不保存值,这样就不会恢复了.
- Exception 和 Error 包结构
- 数据库简述(以MySQL为例)
一.数据库中的概念 1.数据库是用户存放数据.访问数据.操作数据的存储仓库,用户的各种数据被有组织地存放在数据库中.可以随时被有权限的用户查询.统计.添加.删除和修改.可以说,数据库是长期存储在计算机 ...
- Linux 各个版本之间的差别
一直没有搞清楚RHEL,CentOS,,还有Ubuntu,fedora这些版本之间的差别,搜了一下,整理到这里,备忘吧. 我最关心的: 1, CentOS是在RHEL基础上的免费版: 2, Ubunt ...