洛谷P1730最小密度路径
首先理解题目,究其本质就是一个最短路问题,而且数据范围贼水,用floyd完全没问题,但是题目有变化,要求出路径边权值与边数之比,这里就可以考虑在把floyd中的二维数组变为三维,f[ i ][ j ][ l ]表示从 i 到 j 经过 l 条边的情况,而且因为是有向图,所以从一点到达另一点经过的边数最多为n-1条(除非数据有问题),做完floyd之后就从1~n-1枚举边数,然后比较得出ans即可,不过要注意,对于f[ s ][ t ][ l ],某些 l 的情况是不存在的,所以别忘了赋inf初值。下面是代码:
#include<bits/stdc++.h>
#define inf 1e9
using namespace std;
int n,m,q;
int dis[][][];
int main()
{
//freopen("path.in","r",stdin);
//freopen("path.out","w",stdout);
scanf("%d%d",&n,&m);
for(int l=;l<=m;l++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j][l]=inf;
for(int i=;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(dis[x][y][]>z)
dis[x][y][]=z;
}
for(int l=;l<=m;l++)
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j][l]=min(dis[i][j][l],dis[i][k][l-]+dis[k][j][]);
scanf("%d",&q);
while(q--){
int x,y;
double ans=inf,now=inf;
scanf("%d%d",&x,&y);
for(int l=;l<=n;l++)
{
if(dis[x][y][l]<inf)
now=(double)dis[x][y][l]/(double)l;
ans=min(ans,now);
}
if(ans==inf)printf("OMG!\n");
else printf("%.3lf\n",ans);
}
return ;
}
洛谷P1730最小密度路径的更多相关文章
- [洛谷P1730] 最小密度路径
类型:Floyd 传送门:>Here< 题意:定义一条路径密度 = 该路径长度 / 边数.给出一张$DAG$,现有$Q$次询问,每次给出$X,Y$,问$X,Y$的最小密度路径($N \le ...
- 洛谷P1730 最小密度路径(floyd)
题意 题目链接 Sol zz floyd. 很显然的一个dp方程\(f[i][j][k][l]\)表示从\(i\)到\(j\)经过了\(k\)条边的最小权值 可以证明最优路径的长度一定\(\leqsl ...
- Luogu P1730 最小密度路径(最短路径+dp)
P1730 最小密度路径 题面 题目描述 给出一张有 \(N\) 个点 \(M\) 条边的加权有向无环图,接下来有 \(Q\) 个询问,每个询问包括 \(2\) 个节点 \(X\) 和 \(Y\) , ...
- 【洛谷P1730】最小密度路径
题目大意:给定一个 N 个点,M 条边的有向图,现有 Q 个询问,每次询问 X 到 Y 的最小密度路径是多少.最小密度路径的定义是路径长度除以路径边数. 题解:利用矩阵乘法,可以预处理出从 X 到 Y ...
- 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...
- [Luogu 1730]最小密度路径
Description 给出一张有N个点M条边的加权有向无环图,接下来有Q个询问,每个询问包括2个节点X和Y,要求算出从X到Y的一条路径,使得密度最小(密度的定义为,路径上边的权值和除以边的数量). ...
- 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划
洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...
- Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)
题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...
- 洛谷P2764 最小路径覆盖问题
有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...
随机推荐
- SpringMVC+MyBatis开发中指定callSettersOnNulls,可解决返回字段不全的问题
Spring+MyBatis开发过程中,在xxMapper.xml配置文件进行select查询时resultType="map",如果要查询的字段是空值,在返回的map中会出现找不 ...
- struts2之OGNL用法
浅析OGNL OGNL是Object-GraphNavigation Language的缩写,是一种功能强大的表达式语言 通过它简单一致的表达式语法,可以存取对象的任意属性,调用对象的方法,遍历整个对 ...
- gitlab通过api创建组、项目、成员
前戏 获取gitlab中admin用户的private_token Groups API 获取某个组的详细 curl --header "PRIVATE-TOKEN: *********&q ...
- 记一次rsync日志报错directory has vanished
中午两点的时候邮件告知rsync同部svn源库失败,看rsync日志报错显示如上,当时还在上课,没在公司,怀疑是不是有人动了svn的版本库,后来询问同事并通过vpn登录服务器上查看版本库是正常的,也没 ...
- COGS1882 [国家集训队2011]单选错位
★ 输入文件:nt2011_exp.in 输出文件:nt2011_exp.out 简单对比时间限制:1 s 内存限制:512 MB [试题来源] 2011中国国家集训队命题答辩 [问题 ...
- 【游记】CTSC&APIO2017
GDOI回来不到两天就前往北京参加CTSC和APIO. CTSC Day1 [考试] T1一道神奇的题,很快想到O(n2)做法,感觉ctsc题目难度应该很大,就没马上想着出正解(事实上这届CTSC偏水 ...
- 使用.net core abp framework
abp是一个有用的框架,包含许多功能,可以用来作为脚手架. 直接在官方网站上输入相应的工程名称,选择对应的版本就会下载对应的版本..net core 版本的可以使用后端框架部分来做api,包含了常用框 ...
- MSSQL 视图/事务(TRAN[SACTION])/存储过程(PROC[EDURE])/触发器(TRIGGER )
--视图 视图是一张虚拟表,它表示一张表的部分数据或多张表的综合数据,其结构和数据是建立在对表的查询基础上 视图在操作上和数据表没有什么区别,但两者的差异是其本质是不同: 数据表是实际存储记录的地方, ...
- webstorm vue环境设置
1. 首先安装vue插件,安装方法: setting --> plugin ,点击plugin,在内容部分的左侧输入框输入vue,会出现两个关于vue的插件,点击安装即可.安装完成后,就可 ...
- fs.createReadStream(filepath).pipe(response);这句是什么意思?
'use strict'; var fs = require('fs'), url = require('url'), path = require('path'), http = require(' ...