Name Disambiguation in AMiner-Clustering, Maintenance, and Human in the Loop
1. 挑战
- 如何量化不同数据源中实体的相似性
- 可能没有重叠信息,需要设计一种量化规则
- 如何确定同名人数
- 现有方案通常预先指定
- 如何整合连续的数据
- 为确保作者经历,需要最小化作者职业生涯中的时间和文章间的间隔,保证其连续性
- 如何实现一个循环的系统
- 没有任何人为交互的消歧系统不够充实,利用人的反馈实现高的消歧准确性
2. 整体框架介绍
- 量化相似性
- 提出了一种结合全局度量和局部链接的学习算法,将每个实体投影到低维的公共空间,可直接计算其相似性
- 确定簇数
- 提出一种端到端的模型,使用递归神经网络直接估算簇数
- 结合人的参与
- 定义了来自用户/注释的6个潜在特征,将其结合到框架的不同组件中以改善消歧准确性
3. 相关研究
- 基于特征的方法
- 利用监督学习方法,基于文档特征向量学习每对文档间的距离函数
- Huang:首先使用块技术将具有相似名称的候选文档组合,然后通过 SVM 学习文档间距离,使用 DBSCAN 聚类文档
- Yoshida:提出两阶段聚类方法,在初次聚类后学习更好的特征
- Han:提出基于 SVM 和 Naive Bayes 的监督消歧方法
- Louppe:使用分类器学习每对的相似度并使用半监督层次聚类
- 基于链接的方法
- 利用来自邻居的拓扑和信息
- GHOST 仅通过共同作者构建文档图
- Tang 使用隐马尔科夫随机场模拟统一概率框架中的节点和边缘特征
- Zhang 通过基于文档相似度和共同作者关系从三个图中学习图嵌入
- 估计簇大小
- 之前为预设值
- 使用 DBSCAN 之类方法避免指定k
- 使用 X-means 变体基于贝叶斯信息准测测量聚类质量迭代估计最优 K
4. 参数设置
5. 框架
5.1. 表示学习
5.1.1. 全局度量学习
5.1.2. 本地链接学习
5.2. 簇估计
- 对每个第t步的训练,首先在[Kmin, Kmax] 间选取簇数 kt
- 从 C 中选取 Kt个集群构建伪候选集 Ct
- DCt:表示 C 中所有文档
- z: 表示固定样本大小
- 从DCt 中采样 z 个文档 Dt进行替换
- Dt 可能包含重复文档且 Dt 的顺序是任意的
- 通过此方式可从 C 中构建无数的训练集
- 使用一个神经网络框架使得 h(Dt)-->r
5.3. 连续集成
- 将新文档以下列方式贪婪的分配给现有的配置文件:
- 根据作者姓名和关联在系统中到排序搜索一组配置文件,每个配置文件对应一篇文章
- 如果有多个匹配,检索文档列表 Di 的全局嵌入 yi,并构建一个本地 KNN 分类器用于查找每个 Ck 的最佳分配
- 每一个 Ck 是一个类别, {(yi,}是一组带有标签的数据点
5.4. 利用人工注释
- 删除
- 删除文档
- 插入
- 将文档Di 添加到 Ck
- 拆分
- 注释为过度合并并请求聚类
- 合并
- 将 Ck 与 Ck‘ 合并
- 创建
- 确认
- 从Sp基于采样约束(Di,Dj,yij)
- 如果 yij = 0 则基于约束(Di,Dl,1)从 Sp 中采样,并生成三元组(Di,Dl,Dj)
- 否则,从整个文档空间中随机采样并生成三元组
6. 效果
Name Disambiguation in AMiner-Clustering, Maintenance, and Human in the Loop的更多相关文章
- On-demand diverse path computation for limited visibility computer networks
In one embodiment, a source device detects a packet flow that meets criteria for multi-path forwardi ...
- CRM 价格批导
日了,好多代码....COPY别人的,懒得改了 *----------------------------------------------------------------------* *** ...
- AAAI |如何保证人工智能系统的准确性?
|如何保证人工智能系统的准确性?" title="AAAI |如何保证人工智能系统的准确性?"> 注:本文译自AI is getting smarter; ...
- 微软发布Microsoft Concept Graph和Microsoft Concept Tagging模型
Concept Graph和Microsoft Concept Tagging模型"> 当我们在讨论人工智能时,请注意,我们通常在讨论弱人工智能. 虽然我们现有的资源与之前可谓不同 ...
- 产品 线上 保持 和 支持 服务 (Support and maintenance solutions)
Maintenance and support are the key factors for the smooth functioning of ERP solutions. ERP mainten ...
- 漫谈 Clustering (2): k-medoids
上一次我们了解了一个最基本的 clustering 办法 k-means ,这次要说的 k-medoids 算法,其实从名字上就可以看出来,和 k-means 肯定是非常相似的.事实也确实如此,k-m ...
- 文献阅读 | Resetting histone modifications during human parental-to-zygotic transition
Resetting histone modifications during human parental-to-zygotic transition 人类亲本-合子转变中组蛋白修饰重编程 sci-h ...
- Bayesian Non-Exhaustive Classification A case study:online name disambiguation using temporal record streams
一 摘要: name entity disambiguation:将对应多个人的记录进行分组,使得每个组的记录对应一个人. 现有的方法多为批处理方式,需要将所有的记录输入给算法. 现实环境需要1:以o ...
- 谱聚类(spectral clustering)原理总结
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也 ...
随机推荐
- Android ListView的优化
最近的项目中有通讯录这个模块,里面的通讯录涉及的联系人数量很大,导致在加载页面的时候有点卡,所以就必须得进行优化,优化的最终实现理论是什么?就是让ListView一次性加载的数据较少,后续根据用户操作 ...
- VC对话框实现添加滚动条实现滚动效果
对话框滚动条及滚动效果实现,用的api主要有: ScrollWindow, SetScrollInfo, GetScrollInfo, SetWindowOrgEx.涉及的数据结构为SCROLLINF ...
- [solr]solr的安装
solr是什么? 翻译: SolrTM is the popular, blazing fast open source enterprise search platform from the Apa ...
- C语言实现单链表的遍历,逆序,插入,删除
单链表的遍历,逆序,插入,删除 #include<stdio.h> #include<stdlib.h> #include <string.h> #define b ...
- DIV CSS display(block,inline,none)的属性教程
display:inline.block.inline-block的区别 display:block就是将元素显示为块级元素. block元素的特点是: 总是在新行上开始: 高度,行高以及顶和底边距都 ...
- 鸽巢排序Pigeonhole sort
原理类似桶排序,同样需要一个很大的鸽巢[桶排序里管这个叫桶,名字无所谓了] 鸽巢其实就是数组啦,数组的索引位置就表示值,该索引位置的值表示出现次数,如果全部为1次或0次那就是桶排序 例如 var pi ...
- 初识Webx 1
Webx是一套基于Java Servlet API的通用Web框架.它在Alibaba集团内部被广泛使用.从2010年底,向社会开放源码. Webx框架是一个稳定.强大的Web框架.建立在Spring ...
- Maven搭建SpringMVC + SpringJDBC项目详解
前言 上一次复习搭建了SpringMVC+Mybatis,这次搭建一下SpringMVC,采用的是SpringJDBC,没有采用任何其他的ORM框架,SpringMVC提供了一整套的WEB框架,所以如 ...
- Item 30 用enum代替int常量类型枚举,string常量类型枚举
1.用枚举类型替代int枚举类型和string枚举类型 public class Show { // Int枚举类型 // public static final int APPLE_FUJI ...
- 图连通性【tarjan点双连通分量、边双联通分量】【无向图】
根据 李煜东大牛:图连通性若干拓展问题探讨 ppt学习. 有割点不一定有割边,有割边不一定有割点. 理解low[u]的定义很重要. 1.无向图求割点.点双联通分量: 如果对一条边(x,y),如果low ...