DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations, Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, Xiaoou Tang, in CVPR 2016.

这篇文章接收了一个large-scale的带有完善标注的服装数据集DeepFashion。

它包含超过800,000张图片,标注有大量的attributes,clothing landmarks,和图像在不同场景(包括商店,街拍和消费者)下的相关性。

为了阐明DeepFashion的优势,文中提出一个新的deep model, FashionNet,通过联合预测义务attributes和landmarks学习衣物特征。

衣物识别算法主要面临三个基本挑战:

1) 衣物通常在类型、纹理和裁剪上有较大不同;

2) 衣物经常会有变形或遮挡;

3) 在不同场景下,同一件衣物表现差别很大,例如在线购物的照片和消费者的自拍照等。

先前的研究克服这些挑战通过使用语义attributes(例如color,category,texture),衣物位置(masks of clothes),或者cross-domain图像相关性来标注衣物数据集。但是不同数据集使用不同信息标注,这篇文章提出的DeepFashion数据集联合进行所有的标注。

FaceNet:能够同时预测landmarks和attributes

网络结构与VGG-16相似,第一到四个卷积层完全相同,FaceNet的第五个卷积层特别为衣物任务设计,分为三个分枝,红色分枝抓取整个衣物的global feature,绿色分枝基于估计的landmark位置做pooling,抓取local feature,蓝色分枝预测landmarks的位置和可见性(是否被遮挡)。红色分枝和绿色分枝的输出连接在一起联合预测衣物类别,attributes,对衣物pair之间的关系进行建模。如下图所示:

Forward pass:

分为三个阶段:(1)一幅衣物图片输入网络,传入蓝色分枝,预测landmark位置;(2)估计的landmark位置被传入pool5_local,在可见的landmark位置周围进行max-pooling,其余不可见landmark位置的响应gated to zero,获得local feature (对变形和遮挡具有不变性);(3)fc6_global和基于landmark pooled的local feature fc6_local被连接到fc7_fusion.

Backward pass:

Backward pass 后向传播四种类型的损失函数:

1) 回归损失:landmark的定位  v表示可见性,l表示landmark位置

2)softmax分类损失:对landmark可见性和衣物类别的预测

3)交叉熵损失:attributes的预测  这个公式感觉有点问题,a_j和(1 - a_j)的位置应该换成相应的后验p才对

4)triplet loss:成对衣物图像的metric learning

通过加权联合所有损失函数进行迭代优化,迭代分为两个步骤:

1)将蓝色分枝作为main task,其余分枝作为辅助任务。为实现这个目的,对landmark定位的回归损失函数和landmark可见性的分类损失赋予较大权重,其余损失函数赋予较小权重。这样做是因为对landmark的估计与其他任务是相关的,同时训练可以更好收敛;

2)预测衣物类别和attributes,学习衣物之间的成对关系。

以上两步迭代进行直到收敛。

实验中landmark的影响较大,该数据集中的landmark如下示例所示:

文中构建了三个平台,使用DeepFashion对不同方法进行评估:

1)category and attribute预测

2)In-shop clothes检索

3)Consumer-to-Shop衣物检索

很有用的数据集!

CVPR 2016 paper reading (3)的更多相关文章

  1. CVPR 2016 paper reading (2)

    1. Sketch me that shoe, Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales, Cheng Chan ...

  2. CVPR 2016 paper reading (6)

    1. Neuroaesthetics in fashion: modeling the perception of fashionability, Edgar Simo-Serra, Sanja Fi ...

  3. 浅析"Sublabel-Accurate Relaxation of Nonconvex Energies" CVPR 2016 Best Paper Honorable Mention

    今天作了一个paper reading,感觉论文不错,马克一下~ CVPR 2016 Best Paper Honorable Mention "Sublabel-Accurate Rela ...

  4. (转)CVPR 2016 Visual Tracking Paper Review

    CVPR 2016 Visual Tracking Paper Review  本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...

  5. Paper Reading: In Defense of the Triplet Loss for Person Re-Identification

    In Defense of the Triplet Loss for Person Re-Identification  2017-07-02  14:04:20   This blog comes ...

  6. Paper Reading: Stereo DSO

    开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...

  7. 深度视觉盛宴——CVPR 2016

    小编按: 计算机视觉和模式识别领域顶级会议CVPR 2016于六月末在拉斯维加斯举行.微软亚洲研究院在此次大会上共有多达15篇论文入选,这背后也少不了微软亚洲研究院的实习生的贡献.大会结束之后,小编第 ...

  8. Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...

  9. Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )

    Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...

随机推荐

  1. 2.Windows服务-->安装卸载服务

    1.使用vs组件“VS2012开发人员命令提示” 工具,进行安装卸载服务(必须以“管理员身份运行") 安装和卸载的时候选择合适的安装程序工具地址,例如: 安装服务:C:\Windows\Mi ...

  2. 二、mysql存储引擎之InnoDB

    一.存储引擎简介 mysql采用业务逻辑和数据存储分离的架构,底层的存储引擎为上层的SQL层提供了支持:mysql采用的是插件的方式将存储引擎直接加载到正在运行的MySQL中,这是mysql的一个重要 ...

  3. python 之 os._exit() sys.exit() 、exit()

    sys.exit 执行该语句会直接退出程序,这也是经常使用的方法,也不需要考虑平台等因素的影响,一般是退出Python程序的首选方法. 退出程序引发SystemExit异常,(这是唯一一个不会被认为是 ...

  4. Python入门-深浅拷贝

    首先我们在这里先补充一下基础数据类型的一些知识: 一.循环删除 1.前面我们学了列表,字典和集合的一些操作方法:增删改查,现在我们来看一下这个问题: 有这样一个列表: lst = ['周杰伦','周润 ...

  5. canvas image array(canvas图片阵列)

    code:   <!DOCTYPE html> <html> <head>  <title>hehe</title>  </head& ...

  6. 日常捕获的野生知识 - javascript获取屏幕大小

    刚刚接触JavaScript,涉及到 document , window 的一些基本知识不是很了解,今天为了一个屏幕大小折腾了半天,幸好找到了很好的例子学习. 代码如下: <html> & ...

  7. hdu 1087 Super Jumping! Jumping! Jumping!(最大上升子序列和)

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  8. css层叠性和继承性

    1.了解css层叠性 层叠性是什么?就是解决处理css选择器和属性冲突的能力.css的选择器权重是分大小,就是当多个选择器都选中了同一个标签时,听谁的??? 标签选择器 < 类选择器 < ...

  9. ES6入门——正则的扩展

    1.RegExp构造函数 在ES5中,RegExp构造函数的参数有两种情况.第一种情况是参数是字符串,这时第二个参数表示正则表达式的修饰符:第二种情况是,参数是一个正则表示式,这时会返回一个原有正则表 ...

  10. JavaScript中filter()方法

    方法概述 用于把数组(Array)的某些元素过滤掉,然后返回剩下的元素组成的数组. 语法: var filteredArray = array.filter(callback[, thisObject ...