yield的功能类似于return,但是不同之处在于它返回的是生成器

生成器

生成器是通过一个或多个yield表达式构成的函数,每一个生成器都是一个迭代器(但是迭代器不一定是生成器)。

如果一个函数包含yield关键字,这个函数就会变为一个生成器。

生成器并不会一次返回所有结果,而是每次遇到yield关键字后返回相应结果,并保留函数当前的运行状态,等待下一次的调用。

由于生成器也是一个迭代器,那么它就应该支持next方法来获取下一个值。

基本操作

# 通过`yield`来创建生成器
def func():
for i in xrange(10);
yield i # 通过列表来创建生成器
[i for i in xrange(10)]
# 调用如下
>>> f = func()
>>> f # 此时生成器还没有运行
<generator object func at 0x7fe01a853820>
>>> f.next() # 当i=0时,遇到yield关键字,直接返回
0
>>> f.next() # 继续上一次执行的位置,进入下一层循环
1
...
>>> f.next()
9
>>> f.next() # 当执行完最后一次循环后,结束yield语句,生成StopIteration异常
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>>
除了next函数,生成器还支持send函数。该函数可以向生成器传递参数。 >>> def func():
... n = 0
... while 1:
... n = yield n #可以通过send函数向n赋值
...
>>> f = func()
>>> f.next() # 默认情况下n为0
0
>>> f.send(1) #n赋值1
1
>>> f.send(2)
2
>>>

应用

最经典的例子,生成无限序列。

常规的解决方法是,生成一个满足要求的很大的列表,这个列表需要保存在内存中,很明显内存限制了这个问题。

def get_primes(start):
for element in magical_infinite_range(start):
if is_prime(element):
return element
如果使用生成器就不需要返回整个列表,每次都只是返回一个数据,避免了内存的限制问题。 def get_primes(number):
while True:
if is_prime(number):
yield number
number += 1
生成器源码分析
生成器的源码在Objects/genobject.c。 调用栈
在解释生成器之前,需要讲解一下Python虚拟机的调用原理。 Python虚拟机有一个栈帧的调用栈,其中栈帧的是PyFrameObject,位于Include/frameobject.h。 typedef struct _frame {
PyObject_VAR_HEAD
struct _frame *f_back; /* previous frame, or NULL */
PyCodeObject *f_code; /* code segment */
PyObject *f_builtins; /* builtin symbol table (PyDictObject) */
PyObject *f_globals; /* global symbol table (PyDictObject) */
PyObject *f_locals; /* local symbol table (any mapping) */
PyObject **f_valuestack; /* points after the last local */
/* Next free slot in f_valuestack. Frame creation sets to f_valuestack.
Frame evaluation usually NULLs it, but a frame that yields sets it
to the current stack top. */
PyObject **f_stacktop;
PyObject *f_trace; /* Trace function */ /* If an exception is raised in this frame, the next three are used to
* record the exception info (if any) originally in the thread state. See
* comments before set_exc_info() -- it's not obvious.
* Invariant: if _type is NULL, then so are _value and _traceback.
* Desired invariant: all three are NULL, or all three are non-NULL. That
* one isn't currently true, but "should be".
*/
PyObject *f_exc_type, *f_exc_value, *f_exc_traceback; PyThreadState *f_tstate;
int f_lasti; /* Last instruction if called */
/* Call PyFrame_GetLineNumber() instead of reading this field
directly. As of 2.3 f_lineno is only valid when tracing is
active (i.e. when f_trace is set). At other times we use
PyCode_Addr2Line to calculate the line from the current
bytecode index. */
int f_lineno; /* Current line number */
int f_iblock; /* index in f_blockstack */
PyTryBlock f_blockstack[CO_MAXBLOCKS]; /* for try and loop blocks */
PyObject *f_localsplus[1]; /* locals+stack, dynamically sized */
} PyFrameObject;
栈帧保存了给出代码的的信息和上下文,其中包含最后执行的指令,全局和局部命名空间,异常状态等信息。f_valueblock保存了数据,b_blockstack保存了异常和循环控制方法。 举一个例子来说明, def foo():
x = 1
def bar(y):
z = y + 2 # <--- (3) ... and the interpreter is here.
return z
return bar(x) # <--- (2) ... which is returning a call to bar ...
foo() # <--- (1) We're in the middle of a call to foo ...
那么,相应的调用栈如下,一个py文件,一个类,一个函数都是一个代码块,对应者一个Frame,保存着上下文环境以及字节码指令。 c ---------------------------
a | bar Frame | -> block stack: []
l | (newest) | -> data stack: [1, 2]
l ---------------------------
| foo Frame | -> block stack: []
s | | -> data stack: [<Function foo.<locals>.bar at 0x10d389680>, 1]
t ---------------------------
a | main (module) Frame | -> block stack: []
c | (oldest) | -> data stack: [<Function foo at 0x10d3540e0>]
k ---------------------------
每一个栈帧都拥有自己的数据栈和block栈,独立的数据栈和block栈使得解释器可以中断和恢复栈帧(生成器正式利用这点)。 Python代码首先被编译为字节码,再由Python虚拟机来执行。一般来说,一条Python语句对应着多条字节码(由于每条字节码对应着一条C语句,而不是一个机器指令,所以不能按照字节码的数量来判断代码性能)。 调用dis模块可以分析字节码, from dis import dis dis(foo) 5 0 LOAD_CONST 1 (1) # 加载常量1
3 STORE_FAST 0 (x) # x赋值为1 6 6 LOAD_CONST 2 (<code object bar at 0x7f3cdee3a030, file "t1.py", line 6>) # 加载常量2
9 MAKE_FUNCTION 0 # 创建函数
12 STORE_FAST 1 (bar) 9 15 LOAD_FAST 1 (bar)
18 LOAD_FAST 0 (x)
21 CALL_FUNCTION 1 # 调用函数
24 RETURN_VALUE
其中, 第一行为代码行号;
第二行为偏移地址;
第三行为字节码指令;
第四行为指令参数;
第五行为参数解释。
生成器源码分析
由了上面对于调用栈的理解,就可以很容易的明白生成器的具体实现。 生成器的源码位于object/genobject.c。 生成器的创建
PyObject *
PyGen_New(PyFrameObject *f)
{
PyGenObject *gen = PyObject_GC_New(PyGenObject, &PyGen_Type); # 创建生成器对象
if (gen == NULL) {
Py_DECREF(f);
return NULL;
}
gen->gi_frame = f; # 赋予代码块
Py_INCREF(f->f_code); # 引用计数+1
gen->gi_code = (PyObject *)(f->f_code);
gen->gi_running = 0; # 0表示为执行,也就是生成器的初始状态
gen->gi_weakreflist = NULL;
_PyObject_GC_TRACK(gen); # GC跟踪
return (PyObject *)gen;
}
send与next
next与send函数,如下 static PyObject *
gen_iternext(PyGenObject *gen)
{
return gen_send_ex(gen, NULL, 0);
} static PyObject *
gen_send(PyGenObject *gen, PyObject *arg)
{
return gen_send_ex(gen, arg, 0);
}
从上面的代码中可以看到,send和next都是调用的同一函数gen_send_ex,区别在于是否带有参数。 static PyObject *
gen_send_ex(PyGenObject *gen, PyObject *arg, int exc)
{
PyThreadState *tstate = PyThreadState_GET();
PyFrameObject *f = gen->gi_frame;
PyObject *result; if (gen->gi_running) { # 判断生成器是否已经运行
PyErr_SetString(PyExc_ValueError,
"generator already executing");
return NULL;
}
if (f==NULL || f->f_stacktop == NULL) { # 如果代码块为空或调用栈为空,则抛出StopIteration异常
/* Only set exception if called from send() */
if (arg && !exc)
PyErr_SetNone(PyExc_StopIteration);
return NULL;
} if (f->f_lasti == -1) { # f_lasti=1 代表首次执行
if (arg && arg != Py_None) { # 首次执行不允许带有参数
PyErr_SetString(PyExc_TypeError,
"can't send non-None value to a "
"just-started generator");
return NULL;
}
} else {
/* Push arg onto the frame's value stack */
result = arg ? arg : Py_None;
Py_INCREF(result); # 该参数引用计数+1
*(f->f_stacktop++) = result; # 参数压栈
} /* Generators always return to their most recent caller, not
* necessarily their creator. */
f->f_tstate = tstate;
Py_XINCREF(tstate->frame);
assert(f->f_back == NULL);
f->f_back = tstate->frame; gen->gi_running = 1; # 修改生成器执行状态
result = PyEval_EvalFrameEx(f, exc); # 执行字节码
gen->gi_running = 0; # 恢复为未执行状态 /* Don't keep the reference to f_back any longer than necessary. It
* may keep a chain of frames alive or it could create a reference
* cycle. */
assert(f->f_back == tstate->frame);
Py_CLEAR(f->f_back);
/* Clear the borrowed reference to the thread state */
f->f_tstate = NULL; /* If the generator just returned (as opposed to yielding), signal
* that the generator is exhausted. */
if (result == Py_None && f->f_stacktop == NULL) {
Py_DECREF(result);
result = NULL;
/* Set exception if not called by gen_iternext() */
if (arg)
PyErr_SetNone(PyExc_StopIteration);
} if (!result || f->f_stacktop == NULL) {
/* generator can't be rerun, so release the frame */
Py_DECREF(f);
gen->gi_frame = NULL;
} return result;
}
字节码的执行
PyEval_EvalFrameEx函数的功能为执行字节码并返回结果。 # 主要流程如下,
for (;;) {
switch(opcode) { # opcode为操作码,对应着各种操作
case NOP:
goto fast_next_opcode;
...
...
case YIELD_VALUE: # 如果操作码是yield
retval = POP();
f->f_stacktop = stack_pointer;
why = WHY_YIELD;
goto fast_yield; # 利用goto跳出循环
}
} fast_yield:
...
return vetval; # 返回结果
举一个例子,f_back上一个Frame,f_lasti上一次执行的指令的偏移量, import sys
from dis import dis def func():
f = sys._getframe(0)
print f.f_lasti
print f.f_back
yield 1 print f.f_lasti
print f.f_back
yield 2 a = func()
dis(func)
a.next()
a.next()
结果如下,其中第三行的英文为操作码,对应着上面的opcode,每次switch都是在不同的opcode之间进行选择。 6 0 LOAD_GLOBAL 0 (sys)
3 LOAD_ATTR 1 (_getframe)
6 LOAD_CONST 1 (0)
9 CALL_FUNCTION 1
12 STORE_FAST 0 (f) 7 15 LOAD_FAST 0 (f)
18 LOAD_ATTR 2 (f_lasti)
21 PRINT_ITEM
22 PRINT_NEWLINE 8 23 LOAD_FAST 0 (f)
26 LOAD_ATTR 3 (f_back)
29 PRINT_ITEM
30 PRINT_NEWLINE 9 31 LOAD_CONST 2 (1)
34 YIELD_VALUE # 此时操作码为YIELD_VALUE,直接跳转上述goto语句,此时f_lasti为当前指令,f_back为当前frame
35 POP_TOP 11 36 LOAD_FAST 0 (f)
39 LOAD_ATTR 2 (f_lasti)
42 PRINT_ITEM
43 PRINT_NEWLINE 12 44 LOAD_FAST 0 (f)
47 LOAD_ATTR 3 (f_back)
50 PRINT_ITEM
51 PRINT_NEWLINE 13 52 LOAD_CONST 3 (2)
55 YIELD_VALUE
56 POP_TOP
57 LOAD_CONST 0 (None)
60 RETURN_VALUE
18
<frame object at 0x7fa75fcebc20> #和下面的frame相同,属于同一个frame,也就是说在同一个函数(命名空间)内,frame是同一个。
39
<frame object at 0x7fa75fcebc20>


本文 由 cococo点点 创作,采用 知识共享 署名-非商业性使用-相同方式共享 3.0 中国大陆 许可协议进行许可。欢迎转载,请注明出处:
转载自:cococo点点 http://www.cnblogs.com/coder2012

yield 与生成器的更多相关文章

  1. python下yield(生成器)

    python下的协程: #encoding=utf-8 """ 协程----微小的进程 yield生成器-----生成一个可迭代对象比如list, tuple,dir 1 ...

  2. yield和生成器, 通过斐波那契数列学习(2.5)

    实现斐波那契数列的集中方法 返回一个数 def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a+b n += 1 ...

  3. 一列道出yield和生成器的真谛

    均匀大小的块 def chunks(l, n): """Yield successive n-sized chunks from l.""" ...

  4. Python3基础 yield 创建生成器

             Python : 3.7.3          OS : Ubuntu 18.04.2 LTS         IDE : pycharm-community-2019.1.3    ...

  5. Python中的生成器与yield

    对于python中的yield有些疑惑,然后在StackOverflow上看到了一篇回答,所以搬运过来了,英文好的直接看原文吧. 可迭代对象 当你创建一个列表的时候,你可以一个接一个地读取其中的项.一 ...

  6. 【Python】迭代器、生成器、yield单线程异步并发实现详解

    转自http://blog.itpub.net/29018063/viewspace-2079767 大家在学习python开发时可能经常对迭代器.生成器.yield关键字用法有所疑惑,在这篇文章将从 ...

  7. Python入门之迭代器/生成器/yield的表达方式/面向过程编程

    本章内容 迭代器 面向过程编程 一.什么是迭代 二.什么是迭代器 三.迭代器演示和举例 四.生成器yield基础 五.生成器yield的表达式形式 六.面向过程编程 ================= ...

  8. 提高你的python:解释 yield 和 Generators(生成器)

    转自:http://www.oschina.net/translate/improve-your-python-yield-and-generators-explained 原文:http://www ...

  9. python 中的 yield 究竟为何物?生成器和迭代器的区别?

    当你突然看到别人的代码中出现了一个好像见过但又没用过的关键词 比如 yield ,你是否会觉得这段代码真是高大上呢? 或许只有我这种小白才会这样子觉得,就在刚刚,我就看见了别人的代码中的yield,觉 ...

随机推荐

  1. linux命令(6/11)--修改文件的用户组chgrp和文件所有者chown

    在lunix系统里,文件或目录的权限的掌控以拥有者及所诉群组来管理.可以使用chgrp指令取变更文件与目录所属群组,这种方式采用群组名称或群组识别码都可以.Chgrp命令就是change group的 ...

  2. php操作redis cluster集群成功实例

    java操作redis cluster集群可使用jredis php要操作redis cluster集群有两种方式: 1.使用phpredis扩展,这是个c扩展,性能更高,但是phpredis2.x扩 ...

  3. jQuery UI 自定义样式的日历控件

    在线演示 本地下载

  4. golang解析json报错:invalid character '\x00' after top-level value

    golang解析json报错:invalid character '\x00' after top-level value 手动复制字符串:{"files":["c:/t ...

  5. Java JDBC概要总结一(基本操作和SQL注入问题)

    JDBC定义: JDBC(Java DataBase Connectivity,java数据库连接)是一种用于执行SQL语句的Java API.JDBC是Java访问数据库的标准规范,可以为不同的关系 ...

  6. git原理学习

    http://git.oschina.net/progit/   这一点值得牢记:Git 会把工作目录的内容恢复为检出某分支时它所指向的那个提交对象的快照.它会自动添加.删除和修改文件以确保目录的内容 ...

  7. javascript日期格式处理

    一. 服务端返回的日期和时间之间有T Asp.net MVC中 action返回前台的日期类型数据 是带有 T的,如: 2015-07-07T10:15:01. 这样的数据在Chrome浏览器,会自动 ...

  8. 修改Tomcat默认端口号,避免与IDEA冲突

    修改Tomcat默认端口号,避免与IDEA冲突 APT安装默认位置如下 /var/lib/tomcat8/conf 修改server.xml中的8080端口为8088或其他. 重启服务,试试看效果. ...

  9. scjp考试准备 - 8 - final关键字

    题目,如下代码的执行结果: import java.util.ArrayList; class Pizza{ ArrayList toppings; public final void addTopp ...

  10. angular ng-repeat 如何实现嵌套

    slides是一个二维数组 <div ng-repeat="links in slides"> <div ng-repeat="link in link ...