bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 560 Solved: 321
[Submit][Status]
Description
《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。
Input
只有一行,其中有一个正整数 n,30%的数据满足 n≤20。
Output
仅包含一个正整数,表示{1, 2,..., n}有多少个满足上述约束条件 的子集。
Sample Input
Sample Output
【样例解释】
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 100010
#define MOD 1000000001
typedef long long qword;
int gcd(int x,int y)
{
return (x%y==)?y:gcd(y,x%y);
}
int pow(int x,int y)
{
int ret=;
while (y)
{
if (y&)ret*=x;
x*=x;
y>>=;
}
return ret;
}
qword pow_mod(qword x,int y)
{
qword ret=;
while(y)
{
if (y&)ret=ret*x%MOD;
x=x*x%MOD;
y>>=;
}
return ret;
}
int dp[][<<];
int ff[MAXN];
int main()
{
//freopen("input.txt","r",stdin);
int n,x,y;
scanf("%d",&n);
int i,j,k,ii;
qword ans=;
memset(ff,-,sizeof(ff));
for (i=;i<;i++)
{
if ((<<i)<MAXN)
ff[(<<i)]=i;
}
for (i=;i<MAXN;i++)
if (ff[i]==-)ff[i]=ff[i-];
for (ii=;ii<=n;ii++)
{
if (ii%== || ii%==)continue;
int l,r,mid;
l=,r=;
while (l+<r)
{
mid=(l+r)>>;
if ((qword)ii*pow(,mid)<=n)
l=mid;
else
r=mid;
}
memset(dp,,sizeof(dp));
dp[][]=;
x=ii;
for (i=;ii*(<<i>>)<=n;i++)//log(n)
{
for (j=;j<(<<r);j++)//2^(log3(n))
{
if (!dp[i-][j])continue;
for (k=;k<(<<r);k++)
{
if (j&k || (k&(k<<)))continue;
if ((qword)x*pow(,ff[k])>n)break;
dp[i][k]=(dp[i][k]+dp[i-][j])%MOD;
}
}
x*=;
}
qword res=;
for (j=;j<(<<r);j++)
{
res=(res+dp[i-][j])%MOD;
}
ans=ans*res%MOD;
}
printf("%lld\n",ans);
}
bzoj 2734: [HNOI2012]集合选数 状压DP的更多相关文章
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- bzoj 2734 [HNOI2012]集合选数 状压DP+预处理
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...
- $HNOI2012\ $ 集合选数 状压$dp$
\(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- 【BZOJ-2734】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]
传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...
- bzoj 2734: [HNOI2012]集合选数
题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...
随机推荐
- 聊一聊 Android 6.0 的运行时权限
权限一刀切 棉花糖运行时权限 权限的分组 正常权限 正常权限列表 特殊权限危险权限 请求SYSTEM_ALERT_WINDOW 请求WRITE_SETTINGS 必须要支持运行时权限么 不支持运行时权 ...
- GitHub具体教程
GitHub具体教程 Table of Contents 1 Git具体教程 1.1 Git简单介绍 1.1.1 Git是何方神圣? 1.1.2 重要的术语 1.1.3 索引 1.2 Git安装 1. ...
- mybatis06 增删改差 源码
user.java package cn.itcast.mybatis.po; import java.util.Date; public class User { private int id; p ...
- getViewById和getLayoutInflater().inflate的用法
getViewById和getLayoutInflater().inflate得用法 1.什么是LayoutInflaterThis class is used to instantiate layo ...
- Silverlight OOB 程序自动更新
Silverlight OOB 程序 提供了非常方便的自动更新功能! 要让 Silverlight OOB 安装到客户端电脑后实现自动更新,必须实现以下两个条件: 一.为 程序的 xap 文件进行签 ...
- <div>相关
定义 <div>是一个块级元素[会自动换行] 用法 <div>可用于划分独立的一个块状区域,其内部内容显示在<div>的content部分内 结构 [盗用张图] 从 ...
- 前台研发工具Sublime
沟通交流群 [极客Online : 546653637] 欢迎您! 今天一个朋友@我,问有没有好的IDE推荐一下,其实现在有很多文本工具可供选择,像Nodepad++.Editplus之类的,之前我使 ...
- [日历] C#修改CNDate日历帮助类 (转载)
点击下载 CNDate.rar 主要功能如下 .传回公历y年m月的总天数 .根据日期值获得周一的日期 .获取农历 #region 私有方法 private static long[] lunarInf ...
- 前端开发bower包管理器
Bower 是 twitter 推出的一款包管理工具,基于nodejs的模块化思想,他可以很好的帮助你帮你解决js的依赖管理,比如jquery angular bootstrap 等等. 可以很方便的 ...
- js Module模式
// 创建一个立即调用的匿名函数表达式// return一个变量,其中这个变量里包含你要暴露的东西// 返回的这个变量将赋值给counter,而不是外面声明的function自身 var counte ...