[BZOJ 1143] [CTSC2008] 祭祀river 【最长反链】
题目链接:BZOJ - 1143
题目分析
这道题在BZOJ上只要求输出可选的最多的祭祀地点个数,是一道求最长反链长度的裸题。
下面给出一些相关知识:
在有向无环图中,有如下的一些定义和性质:
链:一条链是一些点的集合,链上任意两个点x, y,满足要么 x 能到达 y ,要么 y 能到达 x 。
反链:一条反链是一些点的集合,链上任意两个点x, y,满足 x 不能到达 y,且 y 也不能到达 x。
那么很显然这道题就是求最长反链长度了。
一个定理:最长反链长度 = 最小链覆盖(用最少的链覆盖所有顶点)
对偶定理:最长链长度 = 最小反链覆盖
那么我们要求出的就是这个有向无环图的最小链覆盖了。最小链覆盖也就是路径可以相交的最小路径覆盖。
我们先来看路径不能相交的最小路径覆盖怎么来做:
建立一个二分图,两边都是n个点,原图的每个点 i 对应两个,在左边的叫做 i1, 在右边的叫做 i2 。
然后原图中如果存在一条边 (x, y),那么就在二分图中建立 (x1, y2) 的边。
这样建立二分图之后,原图的点数 n - 二分图最大匹配 = 原图的最小路径覆盖(路径不能相交)。
这样为什么是对的呢?我们可以认为,开始时原图的每个点都是独立的一条路径,然后我们每次在二分图中选出一条边,就是将两条路径连接成一条路径,答案数就减少1。
而路径是不能相交的,所以我们在二分图中选出的边也是不能相交的,所以就是二分图的最大匹配。
了解了路径不能相交的最小路径覆盖之后,怎么解路径可以相交的最小路径覆盖(也就是最小链覆盖)呢?
我们将原图做一次Floyd传递闭包,之后就可以知道任意两点 x, y,x 是否能到达 y。
如果两个点 x, y,满足 x 可以到达 y ,那么就在二分图中建立边 (x1, y2) 。
这样其实就是相当于将原图改造了一下,只要 x 能到达 y ,就直接连一条边 (x, y),这样就可以“绕过”原图的一些被其他路径占用的点,直接构造新路径了。
这样就将可以相交的最小路径覆盖转化为了路径不能相交的最小路径覆盖了。
另外有一个最长反链=最小链覆盖的例子,NOIP1999 导弹拦截,第二问实质上就是求最小链覆盖,转化为最长反链来求,当然当时我写那道题的时候就是看题解,根本不知道这是求最长反链= =
代码
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <algorithm> using namespace std; const int MaxN = 100 + 5; int n, m, Ans, Index;
int Used[MaxN * 2], Father[MaxN * 2]; bool OK[MaxN][MaxN]; struct Edge
{
int v;
Edge *Next;
} E[MaxN * MaxN], *P = E, *Point[MaxN]; inline void AddEdge(int x, int y)
{
++P; P -> v = y;
P -> Next = Point[x]; Point[x] = P;
} bool Find(int x)
{
for (Edge *j = Point[x]; j; j = j -> Next)
{
if (Used[j -> v] == Index) continue;
Used[j -> v] = Index;
if (Father[j -> v] == 0 || Find(Father[j -> v]))
{
Father[j -> v] = x;
return true;
}
}
return false;
} int main()
{
scanf("%d%d", &n, &m);
int a, b;
for (int i = 1; i <= m; ++i)
{
scanf("%d%d", &a, &b);
OK[a][b] = true;
}
for (int k = 1; k <= n; ++k)
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
OK[i][j] = OK[i][j] || (OK[i][k] && OK[k][j]);
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
if (OK[i][j]) AddEdge(i, n + j);
Index = 0;
Ans = 0;
for (int i = 1; i <= n; ++i)
{
++Index;
if (Find(i)) ++Ans;
}
Ans = n - Ans;
printf("%d\n", Ans);
return 0;
}
[BZOJ 1143] [CTSC2008] 祭祀river 【最长反链】的更多相关文章
- BZOJ 1143: [CTSC2008]祭祀river 最长反链
1143: [CTSC2008]祭祀river Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- BZOJ 1143 1143: [CTSC2008]祭祀river 最长反链
1143: [CTSC2008]祭祀river Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动. ...
- Bzoj 2718: [Violet 4]毕业旅行 && Bzoj 1143: [CTSC2008]祭祀river 传递闭包,二分图匹配,匈牙利,bitset
1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1878 Solved: 937[Submit][St ...
- bzoj 1143: [CTSC2008]祭祀river / 2718: [Violet 4]毕业旅行 -- 二分图匹配
1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Description 在遥远的东方,有一个神秘的民族,自称Y族.他们 ...
- bzoj1143(2718)[CTSC2008]祭祀river(最长反链)
1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2781 Solved: 1420[Submit][S ...
- bzoj1143: [CTSC2008]祭祀river 最长反链
题意:在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河道连 ...
- [BZOJ1143][CTSC2008]祭祀river(最长反链)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...
- [BZOJ]1143: [CTSC2008]祭祀river
题目大意:给定一个n个点m条边的有向无环图,问最多选多少个点使得两两之间互不到达.(n<=100,m<=1000) 思路:题目所求即最长反链,最长反链=最小链覆盖,对每个点向自己能到的所有 ...
- BZOJ 1143: [CTSC2008]祭祀river 最大独立集
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1143 题解: 给你一个DAG,求最大的顶点集,使得任意两个顶点之间不可达. 把每个顶点v ...
随机推荐
- C++之枚举
1. 声明枚举类型格式 enum Day{ Mon,Tue=5,Wed};//Mon=0;Tue=5;Wed=6 enumDay1{Mon1,Tue1,Wed1};//Mon1=0;Tue1=1;We ...
- tuple类型的单词查询例子
17.3 重写前面的TextQuery程序,使用tuple代替QueryResult类. TextQuery.h #ifndef TEXTQUERY_H #define TEXTQUERY_H #in ...
- C++使用Json作为数据包装格式的通信
出处:http://adebugger.cn/2009/11/cpp-json-data-communication/ http://hi.baidu.com/tibelf/item/6be2accd ...
- 使用选择器语法来查找元素 - 你想使用类似于CSS或jQuery的语法来查找和操作元素
http://www.open-open.com/jsoup/selector-syntax.htm
- Abstract Factory 抽象工厂模式
提供一个创建一些列相关或相互依赖对象的接口,而无需指定它们具体的类. 抽象工厂顾名思义就是对工厂的抽象,它提供了一组创建抽象产品对象的操作接口,我们实际使用的是抽象工厂的派生类,派生类中提供了操作的具 ...
- C# winform线程的使用 制作提醒休息小程序(长时间计算机工作者必备)
最近发现日常的工作中,经常因为敲代码而忘记了休息,晚上眼睛特别的累. 并且经常长时间看着显示器,对眼睛一定是不好的,所以今天开发了一个小程序,用于提醒休息. 下面先看看运行效果: 1.程序启动后,后台 ...
- PHP如何解决网站大流量与高并发的…
首先,确认服务器硬件是否足够支持当前的流量. 普通的P4服务器一般最多能支持每天10万独立IP,如果访问量比这个还要大, 那么必须首先配置一台更高性能的专用服务器才能解决问题 ,否则怎么优化都不可能彻 ...
- css height:100%失效
有时做移动端页面时,需要用到height:100%来控制,但是设置完后会发现,用百分比的高是不生效的. 经过上网浏览等查阅资料得知,是否可以使用百分比是根据父级对象定义的.所以解决方法就是在body和 ...
- Java 之文件IO编程 之读取
package com.sun; /* * 这里是对文件IO流读取的操作 * 2014-08-10 */ import java.io.*; public class File_test { publ ...
- oracle rowid 使用
ROWID是数据的详细地址,通过rowid,oracle可以快速的定位某行具体的数据的位置. ROWID可以分为物理rowid和逻辑rowid两种.普通的堆表中的rowid是物理rowid,索引组织表 ...