图论(KM算法):COGS 290. [CTSC2008] 丘比特的烦恼
290. [CTSC2008] 丘比特的烦恼
★★★ 输入文件:cupid.in
输出文件:cupid.out
简单对比
时间限制:1 s
内存限制:128 MB
随着社会的不断发展,人与人之间的感情越来越功利化。最近,爱神丘比特发现,爱情也已不再是完全纯洁的了。这使得丘比特很是苦恼,他越来越难找到合适的男女,并向他们射去丘比特之箭。于是丘比特千里迢迢远赴中国,找到了掌管东方人爱情的神——月下老人,向他求教。
月下老人告诉丘比特,纯洁的爱情并不是不存在,而是他没有找到。在东方,人们讲究的是缘分。月下老人只要做一男一女两个泥人,在他们之间连上一条红线,那
么它们所代表的人就会相爱——无论他们身处何地。而丘比特的爱情之箭只能射中两个距离相当近的人,选择的范围自然就小了很多,不能找到真正的有缘人。
丘比特听了月下老人的解释,茅塞顿开,回去之后用了人间的最新科技改造了自己的弓箭,使得丘比特之箭的射程大大增加。这样,射中有缘人的机会也增加了不少。
情人节(Valentine's
day)的午夜零时,丘比特开始了自己的工作。他选择了一组数目相等的男女,感应到他们互相之间的缘分大小,并依此射出了神箭,使他们产生爱意。他希望能
选择最好的方法,使被他选择的每一个人被射中一次,且每一对被射中的人之间的缘分的和最大。
当然,无论丘比特怎么改造自己的弓箭,总还是存在缺陷的。首先,弓箭的射程尽管增大了,但毕竟还是有限的,不能像月下老人那样,做到“千里姻缘一线牵 ”。其次,无论怎么改造,箭的轨迹终归只能是一条直线,也就是说,如果两个人之间的连线段上有别人,那么莫不可向他们射出丘比特之箭,否则,按月下老人的话,就是“乱点鸳鸯谱”了。
作为一个凡人,你的任务是运用先进的计算机为丘比特找到最佳的方案。
输入文件格式:
输入文件第一行为正整数k,表示丘比特之箭的射程,第二行为正整数n(n<30),随后有2n行,表示丘比特选中的人的信息,其中前n行为男子,后n行为女子。每个人的信息由两部分组成:他的姓名和他的位置。姓名是长度小于20且仅包含字母的字符串,忽略大小写的区别,
位置是由一对整数表示的坐标,它们之间用空格分隔。格式为x y Name。输入文件剩下的部分描述了这些人的缘分。每一行的格式为Name1
Name2 p。Name1和Name2为有缘人的姓名,p是他们之间的缘分值(p为小于等于255的正整数)。以一个End作为文件结束标志。每两个人之间的缘分如果被描述多次,以最后一次为准。如果没有被描述,则说明他们缘分值为1。
输出文件格式:
输出文件仅一个正整数,表示每一对被射中的人之间的缘分的总和。这个和应当是最大的。
输入样例
2
3
0 0 Adam
1 1 Jack
0 2 George
1 0 Victoria
0 1 Susan
1 2 Cathy
Adam Cathy 100
Susan George 20
George Cathy 40
Jack Susan 5
Cathy Jack 30
Victoria Jack 20
Adam Victoria 15
End
输出样例
65
裸题,直接上模板。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int INF=;
char name[][],s1[],s2[];
int n,m,k,pos[][]; bool Dist(int n1,int n2){
return sqrt((pos[n1][]-pos[n2][])*(pos[n1][]-pos[n2][])
+(pos[n1][]-pos[n2][])*(pos[n1][]-pos[n2][]))<=k;
} bool Dir(int n1,int n2){
if(pos[n1][]==pos[n2][]){
for(int i=;i<=n;i++)
if(i!=n1&&i!=n2)
if(pos[i][]==pos[n1][])
if(pos[i][]<=max(pos[n1][],pos[n2][])
&&pos[i][]>=min(pos[n1][],pos[n2][]))
return false;
return true;
} for(int i=;i<=n;i++)
if(i!=n1&&i!=n2)
if(pos[i][]<=max(pos[n1][],pos[n2][])
&&pos[i][]>=min(pos[n1][],pos[n2][]))
if((pos[n1][]-pos[i][])*(pos[n2][]-pos[i][])==
(pos[n2][]-pos[i][])*(pos[n1][]-pos[i][]))
return false; return true;
} int w[][],lx[],ly[],slack[],sx[],sy[],match[]; bool Search(int x){
sx[x]=true;
for(int y=;y<=n;y++){
if(!w[x][y])continue;
int t=lx[x]+ly[y]-w[x][y];
if(t)slack[y]=min(slack[y],t);
else{
if(sy[y])continue;
sy[y]=true;
if(!match[y]||Search(match[y])){
match[y]=x;
return true;
}
}
}
return false;
} int KM(){
memset(match,,sizeof(match));
memset(lx,0x80,sizeof(lx));
memset(ly,,sizeof(ly));
for(int x=;x<=n;x++)
for(int y=;y<=n;y++)
lx[x]=max(lx[x],w[x][y]); for(int x=;x<=n;x++){
memset(slack,,sizeof(slack));
while(true){
memset(sx,,sizeof(sx));
memset(sy,,sizeof(sy));
if(Search(x))break; int minn=INF;
for(int y=;y<=n;y++)
if(!sy[y])
minn=min(slack[y],minn); for(int j=;j<=n;j++)
if(sx[j])
lx[j]-=minn; for(int y=;y<=n;y++)
if(sy[y])
ly[y]+=minn;
else
slack[y]-=minn;
}
}
int ret=;
for(int i=;i<=n;i++)
ret+=w[match[i]][i];
return ret/;
} int main(){
freopen("cupid.in","r",stdin);
freopen("cupid.out","w",stdout);
scanf("%d%d",&k,&n);n*=;
for(int i=;i<=n;i++)
scanf("%d%d %s",&pos[i][],&pos[i][],name[i]); for(int i=;i<=n;i++)
for(int j=;name[i][j];j++)
if(name[i][j]<='Z'&&name[i][j]>='A')
name[i][j]-='A'-'a'; while(true){
scanf("%s",s1);
if(!strcmp(s1,"End"))
break;
scanf("%s",s2);
int n1,n2;
for(n1=;s1[n1];n1++)
if(s1[n1]<='Z'&&s1[n1]>='A')
s1[n1]-='A'-'a'; for(n2=;s2[n2];n2++)
if(s2[n2]<='Z'&&s2[n2]>='A')
s2[n2]-='A'-'a'; for(int i=;i<=n;i++)
if(!strcmp(s1,name[i])){
n1=i;
break;
} for(int i=;i<=n;i++)
if(!strcmp(s2,name[i])){
n2=i;
break;
}
int K;scanf("%d",&K);
if(Dist(n1,n2)&&Dir(n1,n2))
w[n2][n1]=w[n1][n2]=K;
} for(int n1=;n1<=n;n1++)
for(int n2=;n2<=n;n2++)
if(n1!=n2&&!w[n1][n2])
if(Dist(n1,n2)&&Dir(n1,n2))
w[n1][n2]=w[n2][n1]=; printf("%d\n",KM());
return ;
}
图论(KM算法):COGS 290. [CTSC2008] 丘比特的烦恼的更多相关文章
- cogs 290. [CTSC2000] 丘比特的烦恼
290. [CTSC2000] 丘比特的烦恼 ★★★ 输入文件:cupid.in 输出文件:cupid.out 简单对比时间限制:1 s 内存限制:128 MB 随着社会的不断发展,人 ...
- [联赛可能考到]图论相关算法——COGS——联赛试题预测
COGS图论相关算法 最小生成树 Kruskal+ufs int ufs(int x) { return f[x] == x ? x : f[x] = ufs(f[x]); } int Kruskal ...
- KM算法及其优化的学习笔记&&bzoj2539: [Ctsc2000]丘比特的烦恼
感谢 http://www.cnblogs.com/vongang/archive/2012/04/28/2475731.html 这篇blog里提供了3个链接……基本上很明白地把KM算法是啥讲清楚 ...
- 图论补档——KM算法+稳定婚姻问题
突然发现考前复习图论的时候直接把 KM 和 稳定婚姻 给跳了--emmm 结果现在刷训练指南就疯狂补档.QAQ. KM算法--二分图最大带权匹配 提出问题 (不严谨定义,理解即可) 二分图 定义:将点 ...
- 图论(二分图,KM算法):HDU 3488 Tour
Tour Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total Submis ...
- 图论:KM算法
如果,将求二分图的最大匹配的所有匹配边的权重看做1 那么用匈牙利算法求二分图的最大匹配的问题也可以看成求二分图的最大权匹配 如果边权是特例,我们就要使用KM算法来做了 这个算法其实还是比较难的,会用就 ...
- 【HDU 2255】奔小康赚大钱 (最佳二分匹配KM算法)
奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- 【原创】我的KM算法详解
0.二分图 二分图的概念 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V, E)是一个无向图.如果顶点集V可分割为两个互不相交的子集X和Y,并且图中每条边连接的两个顶点一个在X中,另一个在Y ...
- KM算法详解[转]
KM算法详解 原帖链接:http://www.cnblogs.com/zpfbuaa/p/7218607.html#_label0 阅读目录 二分图博客推荐 匈牙利算法步骤 匈牙利算法博客推荐 KM算 ...
随机推荐
- Python之路【第二十篇】:待更新中.....
Python之路[第二十篇]:待更新中.....
- img标签块状与内联的博弈
新手,请前辈们不吝赐教 说到html中img标签是内联还是块状元素,我们首先要知道什么是内联(inline),什么又是块状(block)? 我也在网上查看了一些别人分享的经验,有一个讲到了文档流的概念 ...
- Ant配置
首先去官网下载一个ant的文件 http://ant.apache.org/bindownload.cgi
- Java中View游戏开发框架
java中游戏开发引擎View比较适合被动触发的游戏,不能使用于那种对战的游戏 Game01Activity.java 这里是调用的activity package cn.sun.syspro; i ...
- classpath and path.
simply talk about the <path> and the <classpath> in java development. when the <path& ...
- PHP 进行统一邮箱登陆的代理实现(swoole)
在工作的过程中,经常会有很多应用有发邮件的需求,这个时候需要在每个应用中配置smtp服务器.一旦公司调整了smtp服务器的配置,比如修改了密码等,这个时候对于维护的人员来说要逐一修改应用中smtp的配 ...
- CentOS7下配置Openvpn 2.3.12
1.下载安装包 #wget http://www.oberhumer.com/opensource/lzo/download/lzo-2.09.tar.gz#wget http://swupdate. ...
- QT QSettings 操作(导入导出、保存获取信息)*.ini文件详解
1.QSettings基本使用 1.1.生成.ini文件,来点实用的代码吧. QString fileName;fileName = QCoreApplication::applicationDirP ...
- Codeforces Round #286 (Div. 1) 解题报告
A.Mr. Kitayuta, the Treasure Hunter 很显然的一个DP,30000的数据导致使用map+set会超时.题解给了一个非常实用的做法,由于每个点有不超过250种状态,并且 ...
- javascript——面向对象程序设计(1)
<script type="text/javascript"> //ECMA-262把对象定义为:“无序属性的 集合,其属性可以包含基本值.对象或者函数” //理解对象 ...