Description

A young schoolboy would like to calculate the sum


for some fixed natural k and different natural n. He observed that calculating ik
for all i (1<=i<=n) and summing up results is a too slow way to
do it, because the number of required arithmetical operations increases
as n increases. Fortunately, there is another method which takes only a
constant number of operations regardless of n. It is possible to show
that the sum Sk(n) is equal to some polynomial of degree k+1 in the variable n with rational coefficients, i.e.,



We require that integer M be positive and as small as possible. Under this condition the entire set of such numbers (i.e. M, ak+1, ak, ... , a1, a0)
will be unique for the given k. You have to write a program to find
such set of coefficients to help the schoolboy make his calculations
quicker.

Input

The input file contains a single integer k (1<=k<=20).

Output

Write integer numbers M, ak+1, ak, ... , a1, a0
to the output file in the given order. Numbers should be separated by
one space. Remember that you should write the answer with the smallest
positive M possible.

Sample Input

2

Sample Output

6 2 3 1 0

Source

【分析】
题意就是给出一个k,找一个最小的M使得中a[i]皆为整数.
这个涉及到伯努利数的一些公式,如果不知道的话基本没法做..

1. 伯努利数与自然数幂的关系:

2. 伯努利数递推式:

先通过递推式求得伯努利数,然后用1公式并将中间的(n+1) ^ i,变成n ^ i,后面再加上n ^ k,化进去就行了。

 /*
宋代朱敦儒
《西江月·世事短如春梦》
世事短如春梦,人情薄似秋云。不须计较苦劳心。万事原来有命。
幸遇三杯酒好,况逢一朵花新。片时欢笑且相亲。明日阴晴未定。
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <iostream>
#include <string>
#include <ctime>
#define LOCAL
const int MAXN = + ;
const double Pi = acos(-1.0);
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b){return b == ? a: gcd(b, a % b);}
struct Num{
ll a, b;//分数,b为分母
Num(ll x = , ll y = ) {a = x;b = y;}
void update(){
ll tmp = gcd(a, b);
a /= tmp;
b /= tmp;
}
Num operator + (const Num &c){
ll fz = a * c.b + b * c.a, fm = b * c.b;
if (fz == ) return Num(, );
ll tmp = gcd(fz, fm);
return Num(fz / tmp, fm / tmp);
}
}B[MAXN], A[MAXN];
ll C[MAXN][MAXN]; void init(){
//预处理组合数
for (int i = ; i < MAXN; i++) C[i][] = C[i][i] = ;
for (int i = ; i < MAXN; i++)
for (int j = ; j < MAXN; j++) C[i][j] = C[i - ][j] + C[i - ][j - ];
//预处理伯努利数
B[] = Num(, );
for (int i = ; i < MAXN; i++){
Num tmp = Num(, ), add;
for (int j = ; j < i; j++){
add = B[j];
add.a *= C[i + ][j];
tmp = tmp + add;
}
if (tmp.a) tmp.b *= -(i + );
tmp.update();
B[i] = tmp;
}
}
void work(){
int n;
scanf("%d", &n);
ll M = n + , flag = , Lcm;
A[] = Num(, );
for (int i = ; i <= n + ; i++){
if (B[n + - i].a == ) {A[i] = Num(, );continue;}
Num tmp = B[n + - i];
tmp.a *= C[n + ][i];//C[n+1][i] = C[n + 1][n + 1 - i]
tmp.update();
if (flag == ) Lcm = flag = tmp.b;
A[i] = tmp;
}
A[n] = A[n] + Num(n + , ); for (int i = ; i <= n + ; i++){
if (A[i].a == ) continue;
Lcm = (Lcm * A[i].b) / gcd(Lcm, A[i].b);
}
if (Lcm < ) Lcm *= -;
M *= Lcm;
printf("%lld", M);
for (int i = n + ; i >= ; i--) printf(" %lld", A[i].a * Lcm / A[i].b);
} int main(){ init();
work();
//printf("%lld\n", C[5][3]);
return ;
}

【POJ1707】【伯努利数】Sum of powers的更多相关文章

  1. [伯努利数] poj 1707 Sum of powers

    题目链接: http://poj.org/problem?id=1707 Language: Default Sum of powers Time Limit: 1000MS   Memory Lim ...

  2. [CSAcademy]Sum of Powers

    [CSAcademy]Sum of Powers 题目大意: 给定\(n,m,k(n,m,k\le4096)\).一个无序可重集\(A\)为合法的,当且仅当\(|A|=m\)且\(\sum A_i=n ...

  3. Euler's Sum of Powers Conjecture

    转帖:Euler's Sum of Powers Conjecture 存不存在四个大于1的整数的五次幂恰好是另一个整数的五次幂? 暴搜:O(n^4) 用dictionary:O(n^3) impor ...

  4. UVA766 Sum of powers(1到n的自然数幂和 伯努利数)

    自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...

  5. UVa 766 Sum of powers (伯努利数)

    题意: 求 ,要求M尽量小. 析:这其实就是一个伯努利数,伯努利数公式如下: 伯努利数满足条件B0 = 1,并且 也有 几乎就是本题,然后只要把 n 换成 n-1,然后后面就一样了,然后最后再加上一个 ...

  6. POJ 1707 Sum of powers(伯努利数)

    题目链接:http://poj.org/problem?id=1707 题意:给出n 在M为正整数且尽量小的前提下,使得n的系数均为整数. 思路: i64 Gcd(i64 x,i64 y) { if( ...

  7. sum of powers

    题意: 考虑所有的可重集{a1,a2,a3....ak} 满足a1+a2+....+ak=n,求所有a1^m+a2^m+a3^m的和 n,m,k<=5000 题解: part1: 考虑f[i][ ...

  8. 51nod1228 序列求和(自然数幂和)

    与UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html 由于结果对MOD取模,使用逆元 #include<c ...

  9. [转] Loren on the Art of MATLAB

    http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/ Loren ...

随机推荐

  1. vijosP1006 晴天小猪历险记之Hill

    vijosP1006 晴天小猪历险记之Hill 链接:https://vijos.org/p/1006 [思路] 图上DP. 这个题的递推顺序是关键.先从上一行得到最小值,然后从本行比较最小值,注意本 ...

  2. [SAM4N学习笔记]按键程序(中断方式)

    一.准备工作:      将上一节搭建的工程复制一份,命名为"6.key interrupt".这一节主要讲如何使用SAM4N的GPIO中断功能,实现按键的中断输入. 二.程序编写 ...

  3. ambari的重新安装

    ambari是什么呢? 这里我简单说一下ambari的目的,他的目的就是简化hadoop集群的安装和管理.对于安装简化到什么地步呢?只需要几个命令,在页面上配置几个参数,几百几千个节点的集群就能安装成 ...

  4. BZOJ 2933([Poi1999]地图-区间Dp)

    2933: [Poi1999]地图 Time Limit: 1 Sec   Memory Limit: 128 MB Submit: 7   Solved: 7 [ Submit][ Status] ...

  5. 【SQL】MySQL内置函数中的字符串函数和日期时间函数

    字符串函数 --拼接字符串组成新的字符串 Select concat(‘A’,’B’); --返回字符串长度 Select length(“CAT”) --返回子字符串在字符串中首次出现的位置,没有返 ...

  6. SQL查询记录添加序号(HANA)

    语法:ROW_NUMBER() OVER(PARTITION BY COLUMN ORDER BY COLUMN) row_number() OVER() 从1开始,为每一条分组记录返回一个数字,这里 ...

  7. CSS Sprites的详细使用步骤

    一.把小图放在一张大图中,先排版好.上几张图看看,就比如这个: 谷歌: 淘宝: 土豆右下角悬浮框: 1.把用到的小图都放到了一张大图里,其中的小图之间的排版是有点规律的,比如说淘宝那张,类似的小图放置 ...

  8. C的printf与scanf的用法

    之前没学过C语言,只学过C++,所以就来自学下C语言了,其实个人认为C与C++的区别很小,基本上就是printf与scanf这点输出和输入的区别了,如果还有什么区别的话那就是要包含的头文件是不同的.比 ...

  9. leetcode__Convert Sorted List to Binary Search Tree

    Convert Sorted List to Binary Search Tree Total Accepted: 12283 Total Submissions: 45910My Submissio ...

  10. mybatis05 用户添加

    User.xml 向用户表插入一条记录. 主键返回 需求:user对象插入到数据库后,新记录的主键要通过user对象返回,这样就可以通过user获取主键值. 解决思路: 通过LAST_INSERT_I ...