[Android] 输入系统(一)
Android输入系统是人与机器交互最主要的手段。我们通过按键或者触碰屏幕,会先经由linux产生中断,进行统一的处理过后,转换成Android能识别的事件信息,然后Android的输入系统去获取事件,分发给上层用户程序进行处理。
下面在细分一下输入事件在Android系统中的流程:
从图上能看到,输入事件有四个处理的地方:
- InputReaderThread
- InputDispatcherThread
- WindowInputEventReceiver
- handleReceiverCallback
上面四个地方按功能来划分,其中:
- InputReaderThread负责从输入设备中获取事件,事件加入inboundQueue队列。
- InputDispatcherThread负责把inboundQueue中的事件信息取出,并且从系统中获取该事件所需要分发到的目标(窗口),把事件与目标分别整合成分发项,把分发项加入outboundQueue。另外,这里还是事件的分发端,负责把outboundQueue中的事件取出,通过InputChannel进行分发。分发完成后把该事件入waitQueue。
- WindowInputEventReceiver是事件的接收端。事件会在这里被onTouch这类回调函数处理
- handleReceiveCallback用于接收处理过后的反馈信息,事件在WindowInputEventReceiver端被处理成功或者失败,将会通过InputChannel返回Handled或者UNHandled消息。handleReceiveCallback接收到消息后将会对waitQueue中的事件进行出队列处理。
InputManager
InputManager用于启动InputReaderThread与InputDispatcherThread,会在system_server初始化的时候被创建并且调用InputManager的start方法启动这两个线程。
InputManager的构造函数如下:
InputManager::InputManager(
const sp<EventHubInterface>& eventHub,
const sp<InputReaderPolicyInterface>& readerPolicy,
const sp<InputDispatcherPolicyInterface>& dispatcherPolicy) {
mDispatcher = new InputDispatcher(dispatcherPolicy);
mReader = new InputReader(eventHub, readerPolicy, mDispatcher);
initialize();
}
可以看到构造了InputDispatcher与InputReader两个类,这两个类是功能类,分别为InputDispatcherThread与InputReaderThread提供功能。另外,在构建InputReader的时候,把mDispatcher传递了进去,用于构建QueueInputListener。在这里可以提前说明一下这个成员的作用:把输入事件添加到inboundQueue。
构造函数最后调用了initialize,构建InputReaderThread、InputDispatcherThread。
void InputManager::initialize() {
mReaderThread = new InputReaderThread(mReader);
mDispatcherThread = new InputDispatcherThread(mDispatcher);
}
InputManager的start用于启动InputReaderThread与InputDispatcherThread这两个线程。
status_t InputManager::start() {
status_t result = mDispatcherThread->run("InputDispatcher", PRIORITY_URGENT_DISPLAY);
if (result) {
ALOGE("Could not start InputDispatcher thread due to error %d.", result);
return result;
} result = mReaderThread->run("InputReader", PRIORITY_URGENT_DISPLAY);
if (result) {
ALOGE("Could not start InputReader thread due to error %d.", result); mDispatcherThread->requestExit();
return result;
} return OK;
}
InputReaderThread
InputReaderThread是用来从输入设备中读取输入事件的,首先看一下该线程的threadLoop函数
bool InputReaderThread::threadLoop() {
mReader->loopOnce();
return true;
}
mReader即在构建InputReaderThread时传进来的InputReader,负责实现读取输入事件所需要的各种功能。InputReader::loopOnce用于读取一次输入事件。其中,读取一次包含三个主要动作:
- 获取输入事件
- 处理输入事件
- 输入数据flush
void InputReader::loopOnce() {
size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE); { // acquire lock
processEventsLocked(mEventBuffer, count);
} mQueuedListener->flush();
}
1. 获取输入事件getEvents
几乎所有与输入有关的事件都会从这里获得。其中包含:
- EPOLL_ID_INORIFY.输入设备打开或者删除的事件
- EPOLL_ID_WAKE.管道发送过来的模拟事件
- EPOLL_IN.按键,触摸这类实际操作事件
EPOLL_ID_INOTIFY,用于监控某个目录(子目录)下是否有新增或者删除文件,在这里用于监视/dev/input,这个是输入设备文件所在的目录,如果有新增设备,则会在该目录内创建新文件;如果删除设备,则该目录的相应文件会被删除。
if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
if (eventItem.events & EPOLLIN) {
mPendingINotify = true;
} else {
ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
}
continue;
} ...... if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
mPendingINotify = false;
readNotifyLocked();
deviceChanged = true;
} status_t EventHub::readNotifyLocked() {
if(event->mask & IN_CREATE) {
openDeviceLocked(devname);
} else {
ALOGI("Removing device '%s' due to inotify event\n", devname);
closeDeviceByPathLocked(devname);
}
}
EPOLL_ID_WAKE,EventHub有维护一个pipe,当pipe的写入端按照适当格式写入时间后,getEvents可以通过pipe的读取端获取这个虚拟事件
if (eventItem.data.u32 == EPOLL_ID_WAKE) {
if (eventItem.events & EPOLLIN) {
ALOGV("awoken after wake()");
awoken = true;
char buffer[16];
ssize_t nRead;
do {
nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
} while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
} else {
ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
eventItem.events);
}
continue;
}
EPOLL_IN,用于监控设备文件的输入状态,当我们按键或者触摸设备时,我们就能获得EPOLL_IN状态,从而到该设备读取输入事件
if (eventItem.events & EPOLLIN) {
int32_t readSize = read(device->fd, readBuffer,
sizeof(struct input_event) * capacity);
event->when = now;
event->deviceId = deviceId;
event->type = iev.type;
event->code = iev.code;
event->value = iev.value;
event += 1;
capacity -= 1;
}
监听事件用的是epoll_wait,由于epoll_wait一次能获取的事件可能会有多个,所以一次的getEvents需要对所获得的每个事件都进行上述代码的打包操作,最后返回事件数组。
int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
2. 处理输入事件processEventsLocked
由getEvents获得的事件数组会在这个函数内进行处理,其中事件数组中的事件大致可以分为两类,在这个函数将他们分开处理
- 按键、触摸事件
- 设备增加、删除事件
void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) {
for (const RawEvent* rawEvent = rawEvents; count;) {
int32_t type = rawEvent->type;
size_t batchSize = 1;
if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) {
int32_t deviceId = rawEvent->deviceId;
while (batchSize < count) {
if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT
|| rawEvent[batchSize].deviceId != deviceId) {
break;
}
batchSize += 1;
}
#if DEBUG_RAW_EVENTS
ALOGD("BatchSize: %d Count: %d", batchSize, count);
#endif
processEventsForDeviceLocked(deviceId, rawEvent, batchSize);
} else {
switch (rawEvent->type) {
case EventHubInterface::DEVICE_ADDED:
addDeviceLocked(rawEvent->when, rawEvent->deviceId);
break;
case EventHubInterface::DEVICE_REMOVED:
removeDeviceLocked(rawEvent->when, rawEvent->deviceId);
break;
case EventHubInterface::FINISHED_DEVICE_SCAN:
handleConfigurationChangedLocked(rawEvent->when);
break;
default:
ALOG_ASSERT(false); // can't happen
break;
}
}
count -= batchSize;
rawEvent += batchSize;
}
}
在处理按键、触摸事件时,会根据他们设备的类型调用不同的process函数进行处理。对于触摸事件,基本上只是进行赋值,而按键事件则需要通过映射,把从设备文件读取进来的值转换成Android上层能统一处理的按键事件。
void InputReader::processEventsForDeviceLocked(int32_t deviceId,
const RawEvent* rawEvents, size_t count) {
InputDevice* device = mDevices.valueAt(deviceIndex);
device->process(rawEvents, count);
} void KeyboardInputMapper::process(const RawEvent* rawEvent) {
switch (rawEvent->type) {
case EV_KEY: {
if (getEventHub()->mapKey(getDeviceId(), scanCode, usageCode, &keyCode, &flags)) {
keyCode = AKEYCODE_UNKNOWN;
flags = 0;
}
processKey(rawEvent->when, rawEvent->value != 0, keyCode, scanCode, flags);
}
break;
}
}
上面的mapKey对按键进行了映射处理,processKey用于区分按键的按下或者松开。在processKey的最后,会把事件打包成NotifyKeyArgs,然后通过QueueInputListener把事件push进mArgQueue。由于这里是一个事件数组,所以mArgQueue是必须的。
void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode,
int32_t scanCode, uint32_t policyFlags) { if (down) {
...
} else {
...
}
NotifyKeyArgs args(when, getDeviceId(), mSource, policyFlags,
down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime);
getListener()->notifyKey(&args);
} void QueuedInputListener::notifyKey(const NotifyKeyArgs* args) {
mArgsQueue.push(new NotifyKeyArgs(*args));
}
3. 输入数据flush
在事件数组都push进mArgQueue之后,就需要把mArgQueue队列给推送出去进行下一步的操作,mQueuedListener->flush();就是负责进行队列的推送。还记得我们最开始说的”在构建InputReader的时候,把mDispatcher传递了进去,用于构建QueueInputListener”,我们这里的flush最终就是调用了InputDispatcher的notifyKey
void QueuedInputListener::flush() {
size_t count = mArgsQueue.size();
for (size_t i = 0; i < count; i++) {
NotifyArgs* args = mArgsQueue[i];
args->notify(mInnerListener);
delete args;
}
mArgsQueue.clear();
} void NotifyKeyArgs::notify(const sp<InputListenerInterface>& listener) const {
listener->notifyKey(this);
}
以notifyKey为例,其目的实际上是把事件队列加入mInboundQueue,但是在入mInboundQueue队列之前,调用了interceptKeyBeforeQueueing,该函数通过jni,调用到PhoneWindowManager的interceptKeyBeforeQueueing。而在入了mInboundQueue队列后,就会调用wake函数去唤醒InputDispatcherThread。下一步就是InputDispatcherThread的工作了。
void InputDispatcher::notifyKey(const NotifyKeyArgs* args) {
mPolicy->interceptKeyBeforeQueueing(&event, /*byref*/ policyFlags);
needWake = enqueueInboundEventLocked(newEntry);
if (needWake) {
mLooper->wake();
}
}
InputDispatcherThread
InputDispatcherThread是用来进行事件分发的线程。内部也是调用InputDispatcher来实现所需要的功能。
bool InputDispatcherThread::threadLoop() {
mDispatcher->dispatchOnce();
return true;
}
每次分发,调用的都是dispatchOnce,其内部调用dispatchOnceInnerLocked进行分发后,线程会调用pollOnce进入睡眠,等待下次InputReaderThread的wake操作
void InputDispatcher::dispatchOnce() {
dispatchOnceInnerLocked(&nextWakeupTime);
mLooper->pollOnce(timeoutMillis);
}
分发的过程可以大概分成以下几个步骤:
- 从mInboundQueue的队列头取出事件
- 特殊事件的处理,如POLICY_FLAG_PASS_TO_USER这类事件能直接发送到用户,类似于电量不足的这类事件:当电量低于20%时,直接往上层发送事件,而不用知道当前是在哪个Activity
- 一般事件的处理,进行分发
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) {
mPendingEvent = mInboundQueue.dequeueAtHead(); // Poke user activity for this event.
if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) {
pokeUserActivityLocked(mPendingEvent);
} switch (mPendingEvent->type) {
case EventEntry::TYPE_KEY: {
done = dispatchKeyLocked(currentTime, typedEntry, &dropReason, nextWakeupTime);
break;
}
}
}
分发事件,肯定需要知道事件要分发到哪里,即分发的目标窗口,不过目标窗口可能不止一个。
bool InputDispatcher::dispatchKeyLocked(nsecs_t currentTime, KeyEntry* entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
int32_t injectionResult = findFocusedWindowTargetsLocked(currentTime,
entry, inputTargets, nextWakeupTime); // Dispatch the key.
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
由于可能存在多个目标窗口,所以需要对每个目标窗口都进行事件分发
void InputDispatcher::dispatchEventLocked(nsecs_t currentTime,
EventEntry* eventEntry, const Vector<InputTarget>& inputTargets) {
for (size_t i = 0; i < inputTargets.size(); i++) {
prepareDispatchCycleLocked(currentTime, connection, eventEntry, &inputTarget);
}
}
在分发前的准备,就是把事件入outboundQueue队列,不过请注意,这里的队列不同于inboundQueue,因为outboundQueue是窗口相关的,窗口跟InputDispatcherThread间建立起一个连接(connection),该outboundQueue就是connection的成员。
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget) {
// Not splitting. Enqueue dispatch entries for the event as is.
enqueueDispatchEntriesLocked(currentTime, connection, eventEntry, inputTarget);
} void InputDispatcher::enqueueDispatchEntriesLocked(nsecs_t currentTime,
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget) {
bool wasEmpty = connection->outboundQueue.isEmpty(); // Enqueue dispatch entries for the requested modes.
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_OUTSIDE);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_IS);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER); // If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty && !connection->outboundQueue.isEmpty()) {
startDispatchCycleLocked(currentTime, connection);
}
} void InputDispatcher::enqueueDispatchEntryLocked(
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget,
int32_t dispatchMode) {
// Enqueue the dispatch entry.
connection->outboundQueue.enqueueAtTail(dispatchEntry);
}
在准备完成后就会调用startDispatchCycleLocked进行事件分发,startDispatchCycleLocked这个函数的主体是一个while循环,在循环体内会执行下面三个主要步骤:
- 调用connection的inputPublisher来发出事件
- 把事件从outboundQueue队列中移除
- 把事件加入waitQueue队列,当事件在处理完成后返回,就会从waitQueue中删除该事件
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
while (connection->status == Connection::STATUS_NORMAL
&& !connection->outboundQueue.isEmpty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.head; switch (eventEntry->type) {
case EventEntry::TYPE_KEY: {
KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry); // Publish the key event.
status = connection->inputPublisher.publishKeyEvent(dispatchEntry->seq,
keyEntry->deviceId, keyEntry->source,
dispatchEntry->resolvedAction, dispatchEntry->resolvedFlags,
keyEntry->keyCode, keyEntry->scanCode,
keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime,
keyEntry->eventTime);
}
} // Re-enqueue the event on the wait queue.
connection->outboundQueue.dequeue(dispatchEntry);
traceOutboundQueueLengthLocked(connection);
connection->waitQueue.enqueueAtTail(dispatchEntry);
traceWaitQueueLengthLocked(connection);
}
}
我们来看一下inputPublisher的publishKeyEvent的实现,最后也是调用socket的send接口来实现。
status_t InputPublisher::publishKeyEvent(
uint32_t seq,
int32_t deviceId,
int32_t source,
int32_t action,
int32_t flags,
int32_t keyCode,
int32_t scanCode,
int32_t metaState,
int32_t repeatCount,
nsecs_t downTime,
nsecs_t eventTime) { InputMessage msg;
msg.header.type = InputMessage::TYPE_KEY;
msg.body.key.seq = seq;
msg.body.key.deviceId = deviceId;
msg.body.key.source = source;
msg.body.key.action = action;
msg.body.key.flags = flags;
msg.body.key.keyCode = keyCode;
msg.body.key.scanCode = scanCode;
msg.body.key.metaState = metaState;
msg.body.key.repeatCount = repeatCount;
msg.body.key.downTime = downTime;
msg.body.key.eventTime = eventTime;
return mChannel->sendMessage(&msg);
} status_t InputChannel::sendMessage(const InputMessage* msg) {
do {
nWrite = ::send(mFd, msg, msgLength, MSG_DONTWAIT | MSG_NOSIGNAL);
} while (nWrite == -1 && errno == EINTR);
}
总体的流程如下
[Android] 输入系统(一)的更多相关文章
- Android核心分析之十五Android输入系统之输入路径详解
Android用户事件输入路径 1 输入路径的一般原理 按键,鼠标消息从收集到最终将发送到焦点窗口,要经历怎样的路径,是Android GWES设计方案中需要详细考虑的问题.按键,鼠标等用户消息 ...
- 《深入理解Android 卷III》第五章 深入理解Android输入系统
<深入理解Android 卷III>即将公布.作者是张大伟.此书填补了深入理解Android Framework卷中的一个主要空白.即Android Framework中和UI相关的部分. ...
- 10.7 android输入系统_Dispatcher线程情景分析_Reader线程传递事件和dispatch前处理
android输入系统C++最上层文件是com_android_serve_input_InputManagerService.cpp global key:按下按键,启动某个APP可以自己指定,修改 ...
- 10.5 android输入系统_Reader线程_使用EventHub读取事件和核心类及配置文件_实验_分析
4. Reader线程_使用EventHub读取事件 使用inotify监测/dev/input下文件的创建和删除 使用epoll监测有无数据上报 细节: a.fd1 = inotify_init(& ...
- 10.4 android输入系统_框架、编写一个万能模拟输入驱动程序、reader/dispatcher线程启动过程源码分析
1. 输入系统框架 android输入系统官方文档 // 需FQhttp://source.android.com/devices/input/index.html <深入理解Android 卷 ...
- 10.1、android输入系统_必备Linux编程知识_inotify和epoll
1. inotify和epoll 怎么监测键盘接入与拔出? (1)hotplug机制:内核发现键盘接入/拔出==>启动hotplug进程==>发消息给输入系统 (2)inotify机制:输 ...
- 10.12 android输入系统_InputStage理论
android应用程序对输入系统的处理分为多个阶段,我们把这些阶段称为InputStage 理论处理流程: (1)activity发给window,如果window不能处理,再由activity处理; ...
- 10.11 android输入系统_补充知识_activity_window_decor_view关系
android里:1个application, 有1个或多个activity(比如支付宝有:首页.财富.口碑.朋友.我的,这些就是activity)1个activity, 有1个window(每个ac ...
- 10.6 android输入系统_Dispatcher线程_总体框架
图解Android - Android GUI 系统 (5) - Android的Event Input System - 漫天尘沙 - 博客园.htm // 关注里面的Dispatcher处理流程h ...
随机推荐
- android 自定义Toast显示风格
1.创建一个自己想要显示Toast风格的XML如下代码(toast_xml.xml): <?xml version="1.0" encoding="utf-8&qu ...
- java编译期优化与执行期优化技术浅析
java语言的"编译期"是一段不确定的过程.由于它可能指的是前端编译器把java文件转变成class字节码文件的过程,也可能指的是虚拟机后端执行期间编译器(JIT)把字节码转变成机 ...
- STL——临时对象的产生与运用
所谓临时对象,就是一种无名对象.它的出现如果不在程序员的预期之下(例如任何pass by value操作都会引发copy操作,于是形成一个临时对象),往往造成效率上的负担.但有时候刻意制造一些临时对象 ...
- [转] 消息系统该Push/Pull模式分析
信息推拉技术简介 “智能信息推拉(IIPP)技术”是在网上信息获取技术中加入了智能成份,从而有助于用户在海量信息中高效.及时地获取最新信息,提高了信 息系统主动信息服务的能力.如果引入基于IIPP的主 ...
- redis 记录
参考 : http://keenwon.com/1275.html http://blog.csdn.net/freebird_lb/article/details/7733970 http://w ...
- 有向图的欧拉路径POJ2337
每个单词可以看做一条边,每个字母就是顶点. 有向图欧拉回路的判定,首先判断入度和出度,其实这个题判定的是欧拉通路,不一定非得构成环,所以可以有一个点的顶点入度比出度大1,另外一个点的出度比入度大1,或 ...
- My.Ioc 代码示例——谈一谈如何实现装饰器模式,兼谈如何扩展 My.Ioc
装饰器模式体现了一种“组合优于继承”的思想.当我们要动态为对象增加新功能时,装饰器模式往往是我们的好帮手. 很多后期出现的 Ioc 容器都为装饰器模式提供了支持,比如说 Autofac.在 My.Io ...
- ASP.NET MVC 几种 Filter 的执行过程源码解析
一.前言 之前也阅读过MVC的源码,并了解过各个模块的运行原理和执行过程,但都没有形成文章(所以也忘得特别快),总感觉分析源码是大神的工作,而且很多 人觉得平时根本不需要知道这些,会用就行了.其实阅读 ...
- (转帖) 如何將值delay n個clock? (SOC) (Verilog)
来源:http://www.cnblogs.com/oomusou/archive/2009/06/15/verilog_dly_n_clk.html /* (C) OOMusou 2009 http ...
- 不同浏览器对parseInt方法解析的不同
parseInt方法的作用是将字符串转换为数字 当parseInt解析的时候只有0x和非0开头的数字,浏览器解析都一致,例如”0xA1”或 “9”. 只有当开头为0的时候才出现不同.IE,chrome ...