原题:POJ3274

参考:进击的阿俊


已知有n头牛,用一个K位二进制数Ak,Ak-1,...,A1表示一头牛具有的特征,Ai=1表示具有特征i。现给定按顺序排列的N头牛的k位特征值,称某个连续范围内“特征平衡”,假如在这个范围内,拥有各个特征的牛的数量都相等。求最大“特征平衡”连续范围。

分析:

用sum[i][j]( 1<=i<=n, 1<=k<=j)表示1到第i头牛中具有特征j的牛的数量。问题转化为求解满足sum[i][l] - sum[j][l] = sum[i][1] - sum[j][1](l = 1,2,..,k)的最大i - j的值。很容易想到最简单的方法,通过令d = n to 1,判断是否存在i,使得sum[i + d][j] - sum[i][j] = sum[i + d][1] - sum[i][j],时间复杂度为O(n*n*k)。由于n的最大值能达到100000,必须选择一个更加优化的方法。

1)容易验证,sum[i][l] - sum[j][l] = sum[i][1] - sum[j][1] ( l = 1,2,..,k ) 等价于sum[i][l] - sum[i][1] = sum[j][l] - sum[j][1] ( l = 1,2,...k )。因此令d[i][j] =  sum[i][j] - sum[i][1] ,问题就转化为求解使得d[i][j] = d[i + size][j]的最大size。

2)为进一步简化算法,对于任意 1<= i <=n, 令sig[i] = (d[i][1] + d[i][2] + ... +d[i][k] ) % m (m为一个较大的质数)。这样,若对于i和j, sig[i] != sig[j],那么必定不会满足d[i][] = d[j][],就无需再对它进行验证;若满足sig[i] = sig[j],才需要进一步确定是否有d[i][] = d[j][]。

3)用h[k] (1 <= k <= m,m为以上取模运算的素数)记录满足sig[i] = k的i值。通过令 i = 1 to n,以此更新h[sig[i]]和largest,即可得到结果。


样例输入

7 3
7
6
7
2
1
4
2

样例输出

4


//
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath> using namespace std; const int maxn = 100010;
const int maxk = 31;
int n, k, tmp;
bool cow[maxn][maxk];
int sum[maxn][maxk];
int d[maxn][maxk]; //d 和 sig辅助计算哈希值
int s, size;
const int prime = 49117;
int sig[maxn];
int largest; vector <int> h[prime]; //哈希表 void search(int i, int t)//0 1 \ 2 2 \ 2 3 \ 3 4 \
{
int size = h[i].size();
for (int j = 0; j < size; j++) {
bool flag = 1;
for (int l = 0; l < k; l++) {
//printf("d[h[%d][%d]:%d][%d]:%d ==? d[%d][%d]:%d\n",i,j,h[i][j],l,d[h[i][j]][l],t,l,d[t][l]);
if ( d[ h[i][j] ][l] != d[t][l] ) {
flag = 0;
break;
}
}
if (flag) {
if (t - h[i][j] > largest)
largest = t - h[i][j];
return;
}
}
h[i].push_back(t);
//printf("i:%d push back t:%d\n",i,t);
} int findLargest()
{
largest = 0;
for (int i = 1; i <= n; i++) {
search(sig[i], i);
printf("%d\n",largest);
}
return largest;
} void init()
{
memset(sum, 0, sizeof(sum));
memset(sig, 0, sizeof(sig));
for (int i = 0; i < prime; i++) h[i].clear();
h[0].push_back(0);
for (i = 1; i <= n; i++) {
for (int j = 0; j < k; j++) {
sum[i][j] = sum[i - 1][j] + cow[i][j];
d[i][j] = sum[i][j] - sum[i][0];
sig[i] += d[i][j];
//printf("%d ",d[i][j]);
//printf("%d ",d[i][j]);
}
//printf("%d\n",sig[i]);
/*
for (j = 0; j < k; j++) {
sig[i] += d[i][j];
}
*/
sig[i] = abs(sig[i]) % prime;
}
} int main()
{
//while (1) {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++ ) {
scanf("%d", &tmp);
for (int j = 0; j < k; j++) {
cow[i][j] = tmp % 2;
tmp /= 2;
}
}
init();
findLargest();
printf("%d\n", largest);
//}
return 0;
}

POJ3274-牛的属性-HASH-ACM的更多相关文章

  1. 牛客网暑期ACM多校训练营(第四场):A Ternary String(欧拉降幂)

    链接:牛客网暑期ACM多校训练营(第四场):A Ternary String 题意:给出一段数列 s,只包含 0.1.2 三种数.每秒在每个 2 后面会插入一个 1 ,每个 1 后面会插入一个 0,之 ...

  2. 牛客网暑期ACM多校训练营(第五场):F - take

    链接:牛客网暑期ACM多校训练营(第五场):F - take 题意: Kanade有n个盒子,第i个盒子有p [i]概率有一个d [i]大小的钻石. 起初,Kanade有一颗0号钻石.她将从第1到第n ...

  3. 牛客网 暑期ACM多校训练营(第二场)A.run-动态规划 or 递推?

    牛客网暑期ACM多校训练营(第二场) 水博客. A.run 题意就是一个人一秒可以走1步或者跑K步,不能连续跑2秒,他从0开始移动,移动到[L,R]的某一点就可以结束.问一共有多少种移动的方式. 个人 ...

  4. 牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学

    牛客网暑期ACM多校训练营(第一场) A.Monotonic Matrix 这个题就是给你一个n*m的矩阵,往里面填{0,1,2}这三种数,要求是Ai,j⩽Ai+1,j,Ai,j⩽Ai,j+1 ,问你 ...

  5. 牛客网暑期ACM多校训练营(第三场)H Diff-prime Pairs (贡献)

    牛客网暑期ACM多校训练营(第三场)H Diff-prime Pairs (贡献) 链接:https://ac.nowcoder.com/acm/contest/141/H来源:牛客网 Eddy ha ...

  6. 2018牛客网暑期ACM多校训练营(第二场)I- car ( 思维)

    2018牛客网暑期ACM多校训练营(第二场)I- car 链接:https://ac.nowcoder.com/acm/contest/140/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 ...

  7. 牛客网暑期ACM多校训练营(第七场)Bit Compression

    链接:https://www.nowcoder.com/acm/contest/145/C 来源:牛客网 题目描述 A binary string s of length N = 2n is give ...

  8. 2018牛客网暑假ACM多校训练赛(第五场)H subseq 树状数组

    原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round5-H.html 题目传送门 - https://www.no ...

  9. 2018牛客网暑假ACM多校训练赛(第四场)E Skyline 线段树 扫描线

    原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round4-E.html 题目传送门 - https://www.no ...

  10. poj3274 Gold Balanced Lineup(HASH)

    Description Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been abl ...

随机推荐

  1. 通过mysql写入一句话木马

    USE mysql;# MySQL 返回的查询结果为空(即零行). # MySQL 返回的查询结果为空(即零行). CREATE TABLE a( cmd1 text NOT NULL );# MyS ...

  2. Matlab编程-基本命令行语句

    (1) mathlab命令行中“,”与“:”的区别: 结尾不加任何东西也会输出结果 以“,”结尾不显示变量数值,但是再次输入变量名之后可以输出变量值 以“:”结尾显示变量值 (2)    输出格式控制 ...

  3. TCP连接建立的三次握手过程可以携带数据吗?

    前几天实验室的群里扔出了这样一个问题:TCP连接建立的三次握手过程可以携带数据吗?突然发现自己还真不清楚这个问题,平日里用tcpdump或者Wireshark抓包时,从来没留意过第三次握手的ACK包有 ...

  4. 自动布局AutoLayout

    1:理解概念 Auto Layout 中文翻译过来意思是 自动布局 ,通过内定的 Constraint (约束)和各项条件来计算出合理的布局.而这个合理的布局,符合我们的的预期和意图. 将我们想象中的 ...

  5. java 解析xml文件案例

    package xmlTest; import javax.xml.parsers.*; import org.w3c.dom.*; public class GetXml { public stat ...

  6. Apache服务器部署多个进程

    本文以xampp安装的apache服务为例进行介绍 1.复制配置文件目录,复制一个新的配置文件目录conf2,区别于原来的配置文件目录conf

  7. hdu4348 - To the moon 可持久化线段树 区间修改 离线处理

    法一:暴力! 让干什么就干什么,那么久需要可持久化线段树了. 但是空间好紧.怎么破? 不down标记好了! 每个点维护sum和add两个信息,sum是这段真实的和,add是这段整体加了多少,如果这段区 ...

  8. js判断input输入框为空时遇到的问题 弹窗后,光标没有定位到输入框,而是直接执行我的处理页面程序

    无论是会员注册还是提交订单,我们都要使用到form表单,此时我们在处理数据时,就要判断用户填写的信息.一次是直接通过js判断input输入框是否没有填信息,然后在后台处理文件中通过过滤字符串后再次判断 ...

  9. PullToRefreshListView调用onRefreshComplete方法 无法取消刷新的bug

    我们在使用框架:   PullToRefreshListView 实现下拉或者上拉加载时候,可能在上拉 完成时候,调用onRefreshComplete方法去 停止 刷新操作,但是,可能无效,测试产生 ...

  10. delphi TColorDialog

    TColorDialog 预览          实现过程 动态创建和使用颜色对话框 function ShowColorDlg:TColor;begin  with TColorDialog.Cre ...