洛谷1439 排列LCS问题

本题地址:http://www.luogu.org/problem/show?pid=1439

题目描述

给出1-n的两个排列P1和P2,求它们的最长公共子序列。

输入输出格式

输入格式:

第一行是一个数n,
接下来两行,每行为n个数,为自然数1-n的一个排列。

输出格式:

一个数,即最长公共子序列的长度

输入输出样例

输入样例#1:

5

3 2 1 4 5

1 2 3 4 5

输出样例#1:

3

说明

【数据规模】
对于50%的数据,n≤1000
对于100%的数据,n≤100000

【思路】

LCS转LIS + 二分优化LIS

首先明确题目的特殊性:序列为1-n的一个排列即一个序列中不存在重复的元素。

如果LCS正常思路算时间为O(n^2)而且空间需要二维,显然不适用于本题。

这里将第一个序列a重新编号为1..n,并以这个编号规则重新定义第二个序列b,则问题转化为求新的第二个序列的LIS。

O(nlogn)求LIS的方法:二分查找。构造一个g数组,g[i]表示d值为i且最小的a值,每次转移求d[i]可以从g中二分查找满足小于a[i]的最大d值,算法在白书上有过探讨(P62)这里不再赘述。

数据很大,可以考虑优化读入。

【代码】

 #include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std; const int maxn = +;
const int INF=<<;
int n;
int a[maxn],b[maxn],d[maxn]; inline int read_int() {
char c; c=getchar();
while(!isdigit(c)) c=getchar(); int x=;
while(isdigit(c)) {
x=x*+c-'';
c=getchar();
}
return x;
} int main() {
n=read_int();
int tmp[maxn];
for(int i=;i<=n;i++) a[i]=read_int() , tmp[a[i]]=i;
for(int i=;i<=n;i++) b[i]=read_int() , b[i]=tmp[b[i]]; int g[maxn],ans=;
for(int i=;i<=n;i++) g[i]=INF;
for(int i=;i<=n;i++) {
int k=lower_bound(g+,g+n+,b[i])-g;
d[i]=k;
g[d[i]]=b[i];
ans=max(ans,d[i]); //return max
}
cout<<ans<<"\n";
return ;
}

洛谷1439 排列LCS问题的更多相关文章

  1. 洛谷P1439 排列LCS问题

    P1439 排列LCS问题 题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出 ...

  2. 洛谷1439:最长公共子序列(nlogn做法)

    洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...

  3. 最长公共子序列-LCS问题 (LCS与LIS在特殊条件下的转换) [洛谷1439]

    题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出 一个数,即最长公共子序列的长度 输入样例 5 ...

  4. 洛谷P4437 排列 [HNOI/AHOI2018] 贪心

    正解:贪心 解题报告: 传送门! 发现做题龟速,,,所以懒得写题目大意辣自己get一下QAQ 首先看到ai<=n,又当ai=j时j在i的前面,所以就变成对于每个点i有一个约束,即要求第ai个节点 ...

  5. 洛谷P4071-[SDOI2016]排列计数 题解

    SDOI2016-排列计数 发现很多题解都没有讲清楚这道题为什么要用逆元.递推公式怎么来的. 我,风雨兼程三十载,只为写出一篇好题解. 还是我来造福大家一下吧. 题目大意: 一个长度为 n 且 1~n ...

  6. 如何求先序排列和后序排列——hihocoder1049+洛谷1030+HDU1710+POJ2255+UVA548【二叉树递归搜索】

    [已知先序.中序求后序排列]--字符串类型 #1049 : 后序遍历 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho在这一周遇到的问题便是:给出一棵二叉树的前序和 ...

  7. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  8. 最长公共子序列问题(LCS) 洛谷 P1439

    题目:P1439 [模板]最长公共子序列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 关于LCS问题,可以通过离散化转换为LIS问题,于是就可以使用STL二分的方法O(nlogn ...

  9. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

随机推荐

  1. stringstream vs sprintf, sscanf.

    前言 以前一直认为 stringstream 远不如 sprintf. 近日突然萌发了看看 stirngstream 是不是真的如我想的那么烂 对比 // stringstream. stringst ...

  2. 《JavaScript高级程序设计》 阅读计划

    第一周       第1章 JavaScript简介   1 第2章 在Html中使用JavaScript 1 第3章 基本概念   3         第二周       第4章 变量.作用域和内存 ...

  3. js清空前后空格

    function trim(sValue){                var lastValue=this.replace(/(^\s*)|(\s*$)/g,"");     ...

  4. Linux内核设计与实现 读书笔记

    第三章 进程管理 1. fork系统调用从内核返回两次: 一次返回到子进程,一次返回到父进程 2. task_struct结构是用slab分配器分配的,2.6以前的是放在内核栈的栈底的:所有进程的ta ...

  5. jQuery EasyUI tree中state属性慎用

    EasyUI 1.4.4 tree控件中,如果是叶子节点,切忌把state设置为closed,否则该节点会加载整个tree,形成死循环 例如: json入下: [ { "checked&qu ...

  6. 网站开发常用jQuery插件总结(七)背景插件backstretch

    一.backstretch插件功能 优化网站外观.主要用于设置页面背景图片,也可以设置html元素的背景图片.背景图片可以设置多张,在间隔时间内循环显示. 注 但是在设置背景图片时,如果图片过大,网站 ...

  7. 关于Hyper-V虚拟机中的vEthernet虚拟网卡不能联网的问题

    Hyper-V虚拟机在我电脑里面已经有一年了,当初是因为windows8系统里面需要装Hyper-V,这样才能不让win8死机,就折腾了一整子,结果碰到vEthernet网卡不能联网,网上相关的资料少 ...

  8. 网站开发常用jQuery插件总结(14)图片修剪插件Jcrop

    一.插件功能 用于对图片进行修剪.但是在使用Jcrop时,还需要配合服务器端开发语言(如asp.net,php等)使用. 二.官方地址 http://deepliquid.com/content/Jc ...

  9. window.onresize 多次触发的解决方法

    用了window.onresize但是发现每次 onresize 后页面中状态总是不对,下面与大家分享下onresize 事件多次触发的解决方法. 之前做一个扩展,需要在改变窗口大小的时候保证页面显示 ...

  10. about hadoop-eclipse-plugin used by IDE

    Apache Hadoop Development Tools (HDT) is still in development phase. So, no official distribution of ...