Linear Regression with One Variable

Model Representation

Recall that in *regression problems*, we are taking input variables and trying to map the output onto a *continuous* expected result function.

Linear regression with one variable is also known as "univariate linear regression."

Univariate linear regression is used when you want to predict a single output value from a single input value. We're doing supervised learning here, so that means we already have an idea what the input/output cause and effect should be.

The Hypothesis Function

Our hypothesis function has the general form:

hθ(x)=θ01x

We give to hθ values for θ0 and θ1 to get our output 'y'. In other words, we are trying to create a function called hθ that is able to reliably map our input data (the x's) to our output data (the y's).

Example:

x (input) y (output)
0 4
1 7
2 7
3 8

Now we can make a random guess about our hθ function: θ0=2 and θ1=2. The hypothesis function becomes hθ(x)=2+2x.

So for input of 1 to our hypothesis, y will be 4. This is off by 3.

Cost Function

We can measure the accuracy of our hypothesis function by using a cost function. This takes an average (actually a fancier version of an average) of all the results of the hypothesis with inputs from x's compared to the actual output y's.

J(θ01)=(1/2m)∑i=1m(hθ(x(i))−y(i))2

To break it apart, it is 12x¯ where x¯ is the mean of the squares of hθ(x(i))−y(i), or the difference between the predicted value and the actual value.

This function is otherwise called the "Squared error function", or Mean squared error. The mean is halved (12m) as a convenience for the computation of the gradient descent, as the derivative term of the square function will cancel out the 12 term.

Now we are able to concretely measure the accuracy of our predictor function against the correct results we have so that we can predict new results we don't have.

Gradient Descent

So we have our hypothesis function and we have a way of measuring how accurate it is. Now what we need is a way to automatically improve our hypothesis function. That's where gradient descent comes in.

Imagine that we graph our hypothesis function based on its fields θ0 and θ1 (actually we are graphing the cost function for the combinations of parameters). This can be kind of confusing; we are moving up to a higher level of abstraction. We are not graphing x and y itself, but the guesses of our hypothesis function.

We put θ0 on the x axis and θ1 on the z axis, with the cost function on the vertical y axis. The points on our graph will be the result of the cost function using our hypothesis with those specific theta parameters.

We will know that we have succeeded when our cost function is at the very bottom of the pits in our graph, i.e. when its value is the minimum.

The way we do this is by taking the derivative (the line tangent to a function) of our cost function. The slope of the tangent is the derivative at that point and it will give us a direction to move towards. We make steps down that derivative by the parameter α, called the learning rate.

The gradient descent equation is:

repeat until convergence:

θj:=θj−α∂∂θjJ(θ0,θ1)

for j=0 and j=1

Intuitively, this could be thought of as:

repeat until convergence:

θj:=θj−α[Slope of tangent aka derivative]

Gradient Descent for Linear Regression

When specifically applied to the case of linear regression, a new form of the gradient descent equation can be derived. We can substitute our actual cost function and our actual hypothesis function and modify the equation to (the derivation of the formulas are out of the scope of this course, but a really great one can be found here:

repeat until convergence: {θ0:=θ1:=}θ0−α1m∑i=1m(hθ(x(i))−y(i))θ1−α1m∑i=1m((hθ(x(i))−y(i))x(i))

where m is the size of the training set, θ0 a constant that will be changing simultaneously with θ1 and x(i),y(i)are values of the given training set (data).

Note that we have separated out the two cases for θj and that for θ1 we are multiplying x(i) at the end due to the derivative.

The point of all this is that if we start with a guess for our hypothesis and then repeatedly

apply these gradient descent equations, our hypothesis will become more and more accurate.

What's Next

Instead of using linear regression on just one input variable, we'll generalize and expand our concepts so that we can predict data with multiple input variables. Also, we'll solve for θ0 and θ1 exactly without needing an iterative function like gradient descent.

机器学习笔记1——Linear Regression with One Variable的更多相关文章

  1. Stanford机器学习---第一讲. Linear Regression with one variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  2. Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)

    一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...

  3. 机器学习笔记-1 Linear Regression(week 1)

    1.Linear Regression with One variable Linear Regression is supervised learning algorithm, Because th ...

  4. 机器学习笔记-1 Linear Regression with Multiple Variables(week 2)

    1. Multiple Features note:X0 is equal to 1 2. Feature Scaling Idea: make sure features are on a simi ...

  5. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  6. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归

    Lecture2   Linear regression with one variable  单变量线性回归 2.1 模型表示 Model Representation 2.1.1  线性回归 Li ...

  8. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  9. MachineLearning ---- lesson 2 Linear Regression with One Variable

    Linear Regression with One Variable model Representation 以上篇博文中的房价预测为例,从图中依次来看,m表示训练集的大小,此处即房价样本数量:x ...

随机推荐

  1. 网站开发常用jQuery插件总结(14)图片修剪插件Jcrop

    一.插件功能 用于对图片进行修剪.但是在使用Jcrop时,还需要配合服务器端开发语言(如asp.net,php等)使用. 二.官方地址 http://deepliquid.com/content/Jc ...

  2. H5小内容(六)

    Web Worker   基本内容     单线程与多线程       Worker可以模拟多线程的效果     定义 - 运行在后台的javascript     注意 - 不能使用DOM      ...

  3. load-store/register-memory/register-plus-memory比较

    在理解ARM的load-store架构时,我在百度上搜索了很长时间,但是始终找不到一篇像样的中文文章.最后,在用谷歌搜索的英文网站上终于找到了一些蛛丝马迹.让我们先看一下一篇英文资料. Process ...

  4. 加密算法 - RSA算法二

    RSA算法原理(二)  声明: 本文转自阮一峰 (http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html) 有了这些知识, ...

  5. android SurfaceView绘制 重新学习--基础绘制

    自从大二写了个android游戏去参加比赛,之后就一直写应用,一直没用过SurfaceView了,现在进入了游戏公司,准备从基础开始重新快速的学一下这个,然后再去研究openGL和游戏引擎. 直接上代 ...

  6. 【转】WPF中Binding的技巧(一)

    WPF中Binding的技巧(一)   在WPF应用的开发过程中Binding是一个非常重要的部分. 在实际开发过程中Binding的不同种写法达到的效果相同但事实是存在很大区别的. 这里将实际中碰到 ...

  7. ubuntu maven 安装 设置

    http://blog.csdn.net/tiefanhe/article/details/9774189 1.安装 maven ,下载地址:http://maven.apache.org/downl ...

  8. Network Wars

    zoj2676:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1676 题意:给出一个带权无向图 ,每条边e有一个权 .求将点 ...

  9. Linq 筛选出一条数据

    InBoxInfo boxInfo = boxList.Find(p => p.GoodsID == goods.GoodsID.ToString().Trim() && p.S ...

  10. Android CoordinatorLayout + AppBarLayout(向上滚动隐藏指定的View)

    在新的Android Support Library里面,新增了CoordinatorLayout, AppBarLayout等. 实现的效果: 向下滚动RecylerView,Tab会被隐藏,向上滚 ...