Pick-up sticks
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 10330   Accepted: 3833

Description

Stan has n sticks of various length. He throws them one at a time on the floor in a random way. After finishing throwing, Stan tries to find the top sticks, that is these sticks such that there is no stick on top of them. Stan has noticed that the last thrown stick is always on top but he wants to know all the sticks that are on top. Stan sticks are very, very thin such that their thickness can be neglected.

Input

Input consists of a number of cases. The data for each case start with 1 <= n <= 100000, the number of sticks for this case. The following n lines contain four numbers each, these numbers are the planar coordinates of the endpoints of one stick. The sticks are listed in the order in which Stan has thrown them. You may assume that there are no more than 1000 top sticks. The input is ended by the case with n=0. This case should not be processed.

Output

For each input case, print one line of output listing the top sticks in the format given in the sample. The top sticks should be listed in order in which they were thrown.

The picture to the right below illustrates the first case from input.

Sample Input

5
1 1 4 2
2 3 3 1
1 -2.0 8 4
1 4 8 2
3 3 6 -2.0
3
0 0 1 1
1 0 2 1
2 0 3 1
0

Sample Output

Top sticks: 2, 4, 5.
Top sticks: 1, 2, 3.

Hint

Huge input,scanf is recommended.
直接暴力枚举每一条线段就行了,不过有个顺序问题,假设枚举第i个,如果往前枚举的话,排除前面的,这样会超时,如果判断第i个,从第i个往后枚举,不会超时
/*************************************************************************
> File Name: poj_2653.cpp
> Author:
> Mail:
> Created Time: 2015年04月02日 星期四 21时27分10秒
************************************************************************/ #include<iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = ;
bool vis[N];
struct point{
double x, y;
};
struct Line{
point Start, End;
};
Line line[N];
int n;
double Min(double a, double b)
{
return a < b ? a : b;
}
double Max(double a, double b)
{
return a > b ? a : b;
}
double get_direction(point a, point b, point c)
{
point t1, t2;
t1.x = c.x - a.x; t1.y = c.y - a.y;
t2.x = b.x - a.x; t2.y = b.y - a.y;
return (t1.x * t2.y - t2.x * t1.y);
}
bool on_segment(point a, point b, point c)
{
double minx = Min(a.x, b.x);
double maxx = Max(a.x, b.x);
double miny = Min(a.y, b.y);
double maxy = Max(a.y, b.y);
return (c.x <= maxx && c.x >= minx && c.y <= maxy && c.y >= miny);
}
bool segment_intersect(point a, point b, point c, point d)//判断线段是否相交
{
double d1 = get_direction(a, b, c);
double d2 = get_direction(a, b, d);
double d3 = get_direction(c, d, a);
double d4 = get_direction(c, d, b);
if (d1 * d2 < && d3 * d4 < )
return true;//规范相交
//下面的四个都是非规范相交
if (d1 == && on_segment(a, b, c))
return true;
if (d2 == && on_segment(a, b, d))
return true;
if (d3 == && on_segment(c, d, a))
return true;
if (d4 == && on_segment(c, d, b))
return true;
return false;
}
void check_segments(int m)
{
for (int i = m + ; i < n; i++)
{
if (segment_intersect(line[i].Start, line[i].End, line[m].Start, line[m].End))
{
vis[m] = true;
return;
}
}
}
int main()
{
while (~scanf("%d", &n) && n)
{
memset(vis, false, sizeof(vis));
for (int i = ; i < n; i++)
{
scanf("%lf %lf %lf %lf", &line[i].Start.x, &line[i].Start.y, &line[i].End.x, &line[i].End.y);
}
for (int i = ; i < n; i++)
check_segments(i);
printf("Top sticks: ");
bool first = true;
for (int i = ; i < n; i++)
{
if (!vis[i])
{
if (first)
first = false;
else
printf(", ");
printf("%d", i + );
}
}
printf(".\n");
} return ;
}
 

POJ 2653 Pick-up sticks (判断线段相交)的更多相关文章

  1. 【POJ 2653】Pick-up sticks 判断线段相交

    一定要注意位运算的优先级!!!我被这个卡了好久 判断线段相交模板题. 叉积,点积,规范相交,非规范相交的简单模板 用了“链表”优化之后还是$O(n^2)$的暴力,可是为什么能过$10^5$的数据? # ...

  2. POJ2653 Pick-up sticks 判断线段相交

    POJ2653 判断线段相交的方法 先判断直线是否相交 再判断点是否在线段上 复杂度是常数的 题目保证最后答案小于1000 故从后往前尝试用后面的线段 "压"前面的线段 排除不可能 ...

  3. POJ 2826 An Easy Problem? 判断线段相交

    POJ 2826 An Easy Problem?! -- 思路来自kuangbin博客 下面三种情况比较特殊,特别是第三种 G++怎么交都是WA,同样的代码C++A了 #include <io ...

  4. POJ 1066 - Treasure Hunt - [枚举+判断线段相交]

    题目链接:http://poj.org/problem?id=1066 Time Limit: 1000MS Memory Limit: 10000K Description Archeologist ...

  5. 【POJ 1556】The Doors 判断线段相交+SPFA

    黑书上的一道例题:如果走最短路则会碰到点,除非中间没有障碍. 这样把能一步走到的点两两连边,然后跑SPFA即可. #include<cmath> #include<cstdio> ...

  6. POJ 2653 Pick-up sticks(判断线段相交)

    Pick-up sticks Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 7699   Accepted: 2843 De ...

  7. POJ 1066--Treasure Hunt(判断线段相交)

    Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7857   Accepted: 3247 Des ...

  8. POJ_2653_Pick-up sticks_判断线段相交

    POJ_2653_Pick-up sticks_判断线段相交 Description Stan has n sticks of various length. He throws them one a ...

  9. 还记得高中的向量吗?leetcode 335. Self Crossing(判断线段相交)

    传统解法 题目来自 leetcode 335. Self Crossing. 题意非常简单,有一个点,一开始位于 (0, 0) 位置,然后有规律地往上,左,下,右方向移动一定的距离,判断是否会相交(s ...

随机推荐

  1. Mvc 页面缓存 OutputCache VaryByCustom

    优化网站,dotNet MVC 可以通过(OutputCache)特性在某些Action上使用缓存,如果我们想要自定义缓存依据可以通过如下方式进行: 第一步, 在 global.asax.cs 文件中 ...

  2. Unity问答——NGUI怎么使用按键模拟鼠标点击?

    这篇博客源自我在泰课在线的回答.链接:http://www.taikr.com/group/1/thread/248 问:NGUI怎么模拟用代码模拟控制点击 答: 1. 这个问题问得好.因为在使用按键 ...

  3. 趁有空,再了解一下GROOVY中关于类的通例

    简单的,浅浅的看一下. 想起了RUBY里覆盖类的方法... 在GROOVY里也同样提到了,比如TOSTRING... (其实,在我以前的经验中,从未用过这些东东..:)) 这样用了PACKAGE,显得 ...

  4. Eclipse控制台中文乱码

    换了OS真是,主要就是对Eclipse的配置操作不熟悉.用着不顺手.源文件一直都是按照google java style的做法保存为UTF-8.现在显示乱码,就得改Eclipse解码的配置为 UTF- ...

  5. 线性表的顺序存储结构——java

    线性表的顺序存储结构:是指用一组地址连续的存储单元一次存放线性表的元素.为了使用顺序结构实现线性表,程序通常会采用数组来保存线性中的元素,是一种随机存储的数据结构,适合随机访问.java中ArrayL ...

  6. javascript 路线整理

    前端开发很重要,编写脚本也不容易. 总结我以前的前端学习经历,基本是一团乱麻:css+javascript是在大三自学的,当时自己做课程设计,逼着自己在一个月之内,写了一个半成品的j2ee网站.当时, ...

  7. Android通过类对象的方式实现JSON数据的解析

    1.通过主Activity的Button按钮实现数据的解析 public class MainActivity extends Activity { //定义一个包含Json格式的字符对象 priva ...

  8. UVA 11478 Halum(差分约束)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 [思路] 差分约束系统. 设结点u上的操作和为sum[u] ...

  9. Jenkins 一: 环境安装以及配置

    安装JDK 下载地址: http://www.oracle.com/technetwork/java/javase/downloads/index.html 选择的JDK版本和开发使用的JDK版本最好 ...

  10. Thinkphp分页时查询条件保存方法

    web应用中经常要根据用户提交的查询条件进行过滤,再以列表方式显示在浏览器上.如果这种查询是多种条件的组合,并要进行分页显示,则如何在分页导航中保持查询条件,是必须解决的问题. 在Thinkphp中, ...