《University Calculus》-chaper13-多重积分-三重积分的引入
承接之前对一重积分和二重积分的介绍,这里我们自然的引出三重积分。
在二重积分的引入中,我们曾经埋下过一个小伏笔,二重积分的几何意义是求解一个体积,但是我们仅仅限定在了曲顶柱体的几何体,那么对于完全由曲面D包裹的空间D’,我们如何求其体积呢?
我们很自然的能够想到,从x、y、z三个维度作平行线,然后把D’分割成了n个小长方体,如下图。
伴随着n趋于无穷,我们可以完美的得到D’区域的体积。
个人认为,这个例子仅仅是为了自然的引出三重积分的概念和形式,在实际应用中,很难通过这个方法来计算各种各样不规则几何体的体积(因为你难以用定义域的形式准确表征边界D),这些东西笔者会在后序的文章中详细介绍。
为了将三重积分的形式和二重积分、一重积分的黎曼和的形式保持一致,我们可以将三重积分表述成如下的黎曼和的形式:
《University Calculus》-chaper13-多重积分-三重积分的引入的更多相关文章
- 《University Calculus》-chape5-积分法-积分的定义
这一章节讨论积分的定义以及微积分基本定理. 笔者先前在数学证明专栏中关于高斯定理的证明的开头,给出了一段关于微积分思想的概括,文中提到根据导数(微分)的定义,根据其逆定义来给出积分的定义和计算方法,这 ...
- 《University Calculus》-chaper13-向量场中的积分-线积分
线积分: 基于二重积分和三重积分的引入,我们对于线积分的引入过程将会轻车熟路. 对于一根不均匀密度的铜丝,我们如何求其总质量?如下图. 类似二重积分和三重积分的引入,我们首先基于实际问题给出黎曼和的形 ...
- 《University Calculus》-chaper13-多重积分-二重积分的引入
这一章节我们开始对多重积分的研究. 在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f ...
- 《University Calculus》-chape12-偏导数-基本概念
偏导数本质上就是一元微分学向多元函数的推广. 关于定义域的开域.闭域的推广: 其实这个定义本质上讲的就是xoy面上阴影区域的最外面的一周,只不过这里用了更加规范的数学语言. 二次函数的图形.层曲线(等 ...
- 《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式
写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运 ...
- 《University Calculus》-chaper13-多重积分-二重积分的计算
之前关于二重积分的笔记,介绍了二重积分概念的引入,但是对于它的计算方法(化为累次积分),介绍的较为模糊,它在<概率论基础教程>中一系列的推导中发挥着很重要的作用. 回想先前关于二重积分的几 ...
- 《University Calculus》-chape5-积分法-微积分基本定理
定积分中值定理: 积分自身的定义是简单的,但是在教学过程中人们往往记得的只是它的计算方法,在引入积分的概念的时候,往往就将其与计算方法紧密的捆绑在一起,实际上,在积分简单的定义之下,微积分基本定理告诉 ...
- 《University Calculus》-chape10-向量和空间几何学-叉积
叉积概念的引入: 在平面中我们为了度量一条直线的倾斜状态,为引入倾斜角这个概念.而通过在直角坐标系中建立tan α = k,我们实现了将几何关系和代数关系的衔接,这其实也是用计算机解决几何问题的一个核 ...
- 《University Calculus》-chaper8-无穷序列和无穷级数-p级数
Q:定义p级数有如下形式,讨论p级数的敛散性.(p>o) 我们以p = 1作为分界点,因为实践表明这个分界点是最优区分度的.那么下面我们进行分情况讨论. 在这之前,我们有必要先引入一个检验敛散性 ...
随机推荐
- 如何让 .Net Console 控制台显示界面在最上层
可以利用 Win32 API 来控制 Console 窗口的 最大化 或 最小化. 废话不多说见以下代码: [DllImport("user32.dll", SetLastErro ...
- ios strong weak 的区别 与 理解
先一句话总结:strong类保持他们拥有对象的活着,weak类他们拥有的对象被人家一牵就牵走,被人家一干就干死.(strong是一个好大哥所以strong,呵呵,weak是一个虚大哥所以weak,呵呵 ...
- Git 基础再学习之:git checkout -- file
首先明白一下基本概念和用法,这段话是从前在看廖雪峰的git教程的时候摘到OneNote的 准备工作: 新建了一个learngit文件夹,在bash中cd进入文件夹,用以下命令创建一个仓库. $ git ...
- Flyweight 模式
如果一个应用程序使用了太多的对象, 就会造成很大的存储开销. 特别是对于大量轻量级 (细粒度)的对象,比如在文档编辑器的设计过程中,我们如果为每个字母创建一个对象的话,系统可能会因为大量的对象而造成存 ...
- .net程序员必须知道的知识
A while back, I posted a list of ASP.NET Interview Questions. Conventional wisdom was split, with ab ...
- Android获取相册图片
1. AlertDialog的使用 2. 显示和隐式意图的区别 3. 相册页面的跳转 4. 选择完成后返回图片的获取 ----------------------------------------- ...
- python【第六篇】面向对象编程
面向对象编程 一.编程范式:编程的方法论.程序员编程的“套路”及“特点”特点总结,抽象成方法.规范. 二.面向对象编程介绍: 1.描述 世界万物,皆可分类:世间万物,皆为对象:只要是对象,就肯定属于某 ...
- 理解Python的*args, **kwargs
1 # coding=utf-8 2 def speak(*args, **kwargs): 3 print args, kwargs 4 5 6 a = 1 7 b = 2 8 c = 3 9 sp ...
- Android常用的颜色列表 color.xml
转自:http://blog.csdn.net/libaineu2004/article/details/41548313 <?xml version="1.0" encod ...
- 转:2014 年 15 款新评定的最佳 PHP 框架
原文来自于:http://blog.jobbole.com/59999/ 原文出处: codegeekz 译文出处:oschina 欢迎分享原创到伯乐头条 通常,框架都会被认为是帮助开发者快速 ...