题目大意:给N个小屁孩分糖果,每个小屁孩都有一个期望,比如A最多比B多C个,再多了就不行了,会打架的,求N最多比1多几块糖
分析:就是求一个极小极大值...试试看
这里需要用到一个查分约束的东西
下面是查分约束详解:

一直不知道差分约束是什么类型题目,最近在写最短路问题就顺带看了下,原来就是给出一些形如x-y<=b不等式的约束,问你是否满足有解的问题

好神奇的是这类问题竟然可以转换成图论里的最短路径问题,下面开始详细介绍下

比如给出三个不等式,b-a<=k1,c-b<=k2,c-a<=k3,求出c-a的最大值,我们可以把a,b,c转换成三个点,k1,k2,k3是边上的权,如图

由题我们可以得知,这个有向图中,由题b-a<=k1,c-b<=k2,得出c-a<=k1+k2,因此比较k1+k2和k3的大小,求出最小的就是c-a的最大值了

根据以上的解法,我们可能会猜到求解过程实际就是求从a到c的最短路径,没错的....简单的说就是从a到c沿着某条路径后把所有权值和k求出就是c -a<=k的一个

推广的不等式约束,既然这样,满足题目的肯定是最小的k,也就是从a到c最短距离...

理解了这里之后,想做题还是比较有困难的,因为题目需要变形一下,不能单纯的算..

首先以poj3159为例,这个比较简单,就是给出两个点的最大差,然后让你求1到n的最大差,直接建图后用bellman或者spfa就可以过了

稍微难点的就是poj1364,因为他给出的不等式不是x-y<=k形式,有时候是大于号,这样需要我们去变形一下,并且给出的还是>,<没有等于,都要变形

再有就是poj1201,他要求出的是最长距离,那就要把形式变换成x-y>=k的标准形式

注意点:

1. 如果要求最大值想办法把每个不等式变为标准x-y<=k的形式,然后建立一条从y到x权值为k的边,变得时候注意x-y<k =>x-y<=k-1

如果要求最小值的话,变为x-y>=k的标准形式,然后建立一条从y到x的k边,求出最长路径即可

2.如果权值为正,用dj,spfa,bellman都可以,如果为负不能用dj,并且需要判断是否有负环,有的话就不存在

/////////////////////////////////////////////////////////////////////

队列会超时死,用栈就会过.....不要问为什么。。。。。。。为什么。。什么。。。么。。

#include<algorithm>
#include<stack>
#include<stdio.h>
#include<string.h>
#include<string>
#include<map>
#include<iostream>
using namespace std; const int maxn = ;
const int oo = 0x3fffffff; struct node
{
    int u, v, c, next;
}e[maxn*];
int head[maxn], dis[maxn];
bool use[maxn]; void AddAge(int u, int v, int c, int k)
{
    e[k].u = u;
    e[k].v = v;
    e[k].c = c;
    e[k].next = head[u];
    head[u] = k;
}
void spfaStack()
{
    stack<int> sta;
    sta.push();     while(sta.size())
    {
        int i = sta.top();sta.pop();
        use[i] = false;         for(int j=head[i]; j != ; j=e[j].next)
        {
            int u = e[j].u, v = e[j].v, c = e[j].c;             if(dis[v] > dis[u]+c)
            {
                dis[v] = dis[u]+c;
                if(use[v] == false)
                {
                    use[v] = true;
                    sta.push(v);
                }
            }
        }
    }
} int main()
{
    int N, M;     while(scanf("%d%d", &N, &M) != EOF)
    {
        int i, u, v, c;         for(i=; i<=N; i++)
            dis[i] = oo, head[i]=;
        dis[] = ;         for(i=; i<=M; i++)
        {
            scanf("%d%d%d", &u, &v, &c);
            AddAge(u, v, c, i);
        }         spfaStack();         printf("%d\n", dis[N]);
    }     return ;

}

K - Candies(最短路+差分约束)的更多相关文章

  1. 【BZOJ3436】小K的农场(差分约束)

    [BZOJ3436]小K的农场(差分约束) 题面 由于BZOJ巨慢无比,使用洛谷美滋滋 题解 傻逼差分约束题, 您要是不知道什么是差分约束 您就可以按下\(Ctrl+W\)了 #include< ...

  2. BZOJ_3436_小K的农场_差分约束

    BZOJ_3436_小K的农场_差分约束 题意: 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得 一些含糊的信息(共m个),以下列三种形式描述 ...

  3. Candies POJ - 3159 (最短路+差分约束)

    During the kindergarten days, flymouse was the monitor of his class. Occasionally the head-teacher b ...

  4. 【转】最短路&差分约束题集

    转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...

  5. 转载 - 最短路&差分约束题集

    出处:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548    A strange lift基础最短路(或bfs)★ ...

  6. 最短路 & 差分约束 总结

     一.引例      1.一类不等式组的解 二.最短路       1.Dijkstra       2.图的存储       3.链式前向星       4.Dijkstra + 优先队列      ...

  7. P1993 小K的农场(差分约束)

    小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b至少多种植了 ...

  8. S - Layout (最短路&&差分约束)

    Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 < ...

  9. (简单) POJ 3159 Candies,Dijkstra+差分约束。

    Description During the kindergarten days, flymouse was the monitor of his class. Occasionally the he ...

随机推荐

  1. CTE-递归[2]

    在此之前写过一个CTE的递归,取出了所有的子节点,基本上可以满足大多数的需求,这里我们来延伸一下:首先我们回顾下原来的场景 图片的上半部分递归查出某个节点的所有子节点,这个我们已经通过CTE实现了,可 ...

  2. asp.net mvc生命周期学习

    ASP.NET MVC是一个扩展性非常强的框架,探究其生命周期对用Mock框架来模拟某些东西,达到单元测试效果,和开发扩展我们的程序是很好的. 生命周期1:创建routetable.把URL映射到ha ...

  3. NRPE: Unable to read output 问题处理总结

    自定义nagios监控命令check_disk_data,首先在nagios服务端command.cfg定义了#'check_disk_data' command definitiondefine c ...

  4. 十一、C# 泛型

    为了促进代码重用,尤其是算法的重用,C#支持一个名为泛型的特性. 泛型与模块类相似. 泛型使算法和模式只需要实现一交.而不必为每个类型都实现一次.在实例化的时候,传入相应的数据类型便可. 注:可空值类 ...

  5. [转]mysql导入导出数据中文乱码解决方法小结

    本文章总结了mysql导入导出数据中文乱码解决方法,出现中文乱码一般情况是导入导入时编码的设置问题,我们只要把编码调整一致即可解决此方法,下面是搜索到的一些方法总结,方便需要的朋友. linux系统中 ...

  6. javascript的选项卡

    主要用的索引值 首先 写三个按钮 <input type="button" > <input type="button" > <i ...

  7. Linux fork操作之后发生了什么?又会共享什么呢?

    今天我在阅读<Unix网络编程>时候遇到一个问题:accept返回时的connfd,是父子进程之间共享的?我当时很不理解,难道打开的文件描述符不是应该在父子进程间相互独立的吗?为什么是共享 ...

  8. imod报错:error while loading shared libraries: libjpeg.so.62的解决办法

    the file libjpeg.so.62(in /usr/lib/libjpeg.so.62)belongs to the package libjpeg62so try to reinstall ...

  9. HTML TAG FROM MDN

    A <a> <abbr> <acronym> <address> <applet> <area> <article> ...

  10. ExtJs中动态加载机制研究(转)

    觉得写的太好了,怕弄丢了,转一下:http://extjs.org.cn/node/659 昨天我们team对于extjs的动态加载机制做了些深入研究,这里先share下controller加载的结果 ...