描述


 
http://poj.org/problem?id=3181

FJ有n元钱,有k种商品,各为1,2,...,k-1,k元,问有多少种花掉这n元钱的方法.

Dollar Dayz
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5858   Accepted: 2197

Description

Farmer John goes to Dollar Days at The Cow Store and discovers an unlimited number of tools on sale. During his first visit, the tools are selling variously for $1, $2, and $3. Farmer John has exactly $5 to spend. He can buy 5 tools at $1 each or 1 tool at $3 and an additional 1 tool at $2. Of course, there are other combinations for a total of 5 different ways FJ can spend all his money on tools. Here they are:

        1 @ US$3 + 1 @ US$2

1 @ US$3 + 2 @ US$1

1 @ US$2 + 3 @ US$1

2 @ US$2 + 1 @ US$1

5 @ US$1

Write a program than will compute the number of ways FJ can spend N dollars (1 <= N <= 1000) at The Cow Store for tools on sale with a cost of $1..$K (1 <= K <= 100).

Input

A single line with two space-separated integers: N and K.

Output

A single line with a single integer that is the number of unique ways FJ can spend his money.

Sample Input

5 3

Sample Output

5

Source

分析


这是一个完全部分和问题.对于多重部分和问题,可以用多重背包,但是由于有三层循环,会超时(即便使用二进制优化),所以有特殊的算法.而完全部分和问题可以直接用完全背包做.

注意:

1.是大数,要用高精度,或者两位分别存高低位:

unsigned long long 上限是1.8e19,所以每一位存1e17.

2.注意如果高位有数,低位要保证有前导0.

 #include <cstdio>
#include <algorithm>
#define ull unsigned long long
const int maxw=,maxn=;
const ull mod=;
int W,N;
ull dp[maxw][]; void solve()
{
dp[][]=;
for(int i=;i<=N;i++)
{
for(int j=i;j<=W;j++)
{
dp[j][]+=dp[j-i][];
dp[j][]+=dp[j-i][];
dp[j][]+=dp[j][]/mod;
dp[j][]%=mod;
}
}
if(dp[W][])
{
printf("%llu",dp[W][]);
printf("%017llu\n",dp[W][]);
}
else
{
printf("%llu\n",dp[W][]);
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("john.in","r",stdin);
freopen("john.out","w",stdout);
#endif
scanf("%d%d",&W,&N);
solve();
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("john.out");
#endif
return ;
}
 

POJ_3181_Dollar_Dayz_(动态规划,完全部分和,完全背包)的更多相关文章

  1. 两个简单的动态规划问题,0-1背包和最大不相邻数累加和,附递归c代码

    最近面试经常被问到动态规划,所以自己做了一个总结,希望能进行深入的理解然后尝试能不能找到通用的解决手段.我觉得动态规划思想好理解,难的是怎么找出全部并且合理的子问题和出口. 我一般把问题分为两类,一类 ...

  2. 动态规划:部分和问题和数字和为sum的方法数

    很久之前看过这个题目,但是没有仔细整理,直到现在看基础才想到这两个题.这两个题非常经典也非常类似.接下来分别介绍. 部分和问题 题目描述 给定整数a1.a2........an,判断是否可以从中选出若 ...

  3. POJ_1742_Coins_(动态规划,多重部分和)

    描述 http://poj.org/problem?id=1742 n种不同面额的硬币 ai ,每种各 mi 个,判断可以从这些数字值中选出若干使它们组成的面额恰好为 k 的 k 的个数. 原型: n ...

  4. 0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论

    一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i ...

  5. P1759 通天之潜水(不详细,勿看)(动态规划递推,组合背包,洛谷)

    题目链接:点击进入 题目分析: 简单的组合背包模板题,但是递推的同时要刷新这种情况使用了哪些物品 ac代码: #include<bits/stdc++.h> using namespace ...

  6. NOIP 2006 金明的预算方案(洛谷P1064,动态规划递推,01背包变形,滚动数组)

    一.题目链接:P1064 金明的预算方案 二.思路 1.一共只有五种情况 @1.不买 @2.只买主件 @3.买主件和附件1(如果不存在附件也要运算,只是这时附件的数据是0,也就是算了对标准的结果也没影 ...

  7. P1616 疯狂的采药(洛谷,动态规划递推,完全背包)

    先上题目链接:P1616 疯狂的采药 然后放AC代码: #include<bits/stdc++.h> #define ll long long using namespace std; ...

  8. P1060 开心的金明(洛谷,动态规划递推,01背包轻微变形题)

    题目链接:P1060 开心的金明 基本思路: 基本上和01背包原题一样,不同点在于这里要的是最大重要度*价格总和,我们之前原题是 f[j]=max(f[j],f[j-v[i]]+p[i]); 那么这里 ...

  9. P1048 采药(洛谷,动态规划递推,01背包原题)

    题目直接放链接 P1048 采药 这题只是01背包+背景故事而已 原题来的 PS:我写了一篇很详细的01背包说明,如果下面ac代码有看不懂的地方可以去看看 对01背包的分析与理解(图文) 下面上ac代 ...

随机推荐

  1. 推荐几本C#程序员阅读的书籍

    http://www.cnblogs.com/tongming/p/3879752.html

  2. 项目由Windows2003 迁移到Windows 2008 过程,报 JS错误

    这两天在做服务器迁移,遇到了一些小的问题,现在做个粗略的记录 原服务器环境:Windows 2003 现服务器环境:Windows 2008 其中SSB项目在迁移部署后发现,报 JS的错误. 我在想除 ...

  3. 写漂亮C#代码的小技巧

    第一次写博客,不知道代码用什么编辑,直接截图了,哈哈哈.... 我自己不喜欢看随便复制粘贴过来一堆代码的博客,所以,用些简单点的例子吧,希望对大家有帮助...  ------------------- ...

  4. 配置nginx的负载均衡

    1.1   什么是负载均衡 负载均衡 建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽.增加吞吐量.加强网络数据处理能力.提高网络的灵活性和可用性. 负载均衡,英文名称 ...

  5. 2014年12月20日00:33:14-遮罩+进度条-extjs form.isvalid

    1.Extjs : 遮罩+进度条 2.Extjs: extjs form.isvalid http://stackoverflow.com/questions/19354433/extjs-form- ...

  6. 滑动条 Trackbar[OpenCV 笔记9]

    OpenCV中没有实现按钮的功能,我们可以利用滑动条来实现按钮功能. , ); trackbarname 轨迹条的名字. winname 窗口的名字,轨迹条会依附在这个窗口上. value 一个指向整 ...

  7. Graphviz使用简介(中文乱码的问题)

    Graphviz使用简介 graphviz是基于dot语言的绘图工具,可以画有向图.无向图.关系图.目录图.流程图等.具体作用可见它的官方网站 一些参考的网址: http://www.open-ope ...

  8. HTML实体

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  9. which命令

    which指令会在PATH变量指定的路径中,搜索某个系统命令的位置,并且返回第一个搜索结果. 格式 which 可执行文件名称 参数 -V  显示版本信息 实例 用 which 去找出 which w ...

  10. Uploadify 上传失败

    更改Apache的php.ini的配置 In my php.ini (created custom ini file in public_html) would this solve this pro ...