题目链接:

  http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1588

题目大意

  给n1个0和n2个1,连续的0不超过k1个,连续的1不超过k2个。问序列有几种(对1000000001(109+1)取模)

  n1,n2<=100 k1,k2<=10

题目思路:

  【动态规划】

  动态规划比较明显。

  f[i][j][k][0]表示 i个0 j个1 末尾连续k个0的方案数

  f[i][j][k][1]表示 i个0 j个1 末尾连续k个1的方案数

  根据最后末尾取0还是取1可以推出状态转移方程。

  初始化就是全为0或1的情况。

  以下是f[][][][0]的状态转移方程。

  当k>1时,f[i][j][k][0]=f[i-1][j][k-1][0]

  当k=1时,f[i][j][k][0]=Σ(f[i-1][j][p][1]),p=0..k2;

  

 //
//by coolxxx
//
#include<iostream>
#include<algorithm>
#include<string>
#include<iomanip>
#include<memory.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<stdbool.h>
#include<math.h>
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(a) ((a)>0?(a):(-(a)))
#define lowbit(a) (a&(-a))
#define sqr(a) ((a)*(a))
#define swap(a,b) ((a)^=(b),(b)^=(a),(a)^=(b))
#define eps 1e-8
#define J 10
#define MAX 0x7f7f7f7f
#define PI 3.1415926535897
#define mod 1000000001
#define N 104
#define M 14
using namespace std;
int n,m,lll,ans,cas;
int nn,mm;
int f[N][N][M][];
int main()
{
#ifndef ONLINE_JUDGE
// freopen("1.txt","r",stdin);
// freopen("2.txt","w",stdout);
#endif
int i,j,k;
// while(~scanf("%s",s1))
while(~scanf("%d",&n))
{
scanf("%d%d%d",&m,&nn,&mm);
for(i=;i<=nn;i++)f[i][][i][]=;
for(i=;i<=mm;i++)f[][i][i][]=;
for(i=;i<=n;i++)
{
for(j=;j<=m;j++)
{
f[i][j][][]=;
for(k=;k<=mm;k++)
f[i][j][][]=(f[i][j][][]+f[i-][j][k][])%mod;
for(k=;k<=nn;k++)
f[i][j][k][]=max(f[i-][j][k-][],f[i][j][k][]); f[i][j][][]=;
for(k=;k<=nn;k++)
f[i][j][][]=(f[i][j][][]+f[i][j-][k][])%mod;
for(k=;k<=mm;k++)
f[i][j][k][]=max(f[i][j-][k-][],f[i][j][k][]);
}
}
ans=;
for(i=;i<=nn;i++)ans=(ans+f[n][m][i][])%mod;
for(i=;i<=mm;i++)ans=(ans+f[n][m][i][])%mod;
printf("%d\n",ans);
}
return ;
} /*
// //
*/

【动态规划】XMU 1588 01序列计数的更多相关文章

  1. 【BZOJ4818】序列计数(动态规划,生成函数)

    [BZOJ4818]序列计数(生成函数) 题面 BZOJ 题解 显然是求一个多项式的若干次方,并且是循环卷积 或者说他是一个\(dp\)也没有问题 发现项数很少,直接暴力乘就行了(\(FFT\)可能还 ...

  2. [Sdoi2017]序列计数 [矩阵快速幂]

    [Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...

  3. BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法

    BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...

  4. HDU 6348 序列计数 (树状数组 + DP)

    序列计数 Time Limit: 4500/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  5. luogu3702-[SDOI2017]序列计数

    Description Alice想要得到一个长度为nn的序列,序列中的数都是不超过mm的正整数,而且这nn个数的和是pp的倍数. Alice还希望,这nn个数中,至少有一个数是质数. Alice想知 ...

  6. BZOJ4818 序列计数

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MB Description Alice想要得到一个长度为n的序列,序列中的数都是 ...

  7. 【BZOJ 4818】 4818: [Sdoi2017]序列计数 (矩阵乘法、容斥计数)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 359 Description Al ...

  8. P3702 [SDOI2017]序列计数

    P3702 [SDOI2017]序列计数 链接 分析: 首先可以容斥掉,用总的减去一个质数也没有的. 然后可以dp了,f[i][j]表示到第i个数,和在模p下是j的方案数,矩阵快速幂即可. 另一种方法 ...

  9. 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法

    [BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...

随机推荐

  1. 重新启动linux上的tomcat

    1.进入tomcat安装文件夹 2.cd bin 3../shutdown.sh 4../startup.sh

  2. 给tcpdump加点颜色看看

    http://blog.csdn.net/voidccc/article/details/38797685

  3. mac svn .a文件的上传方法

    1.首先确认是否安装了Command Line Tools,如果没有,就Xcode-Preference-Downloads,选择Command Line Tools-install就可以了 2.打开 ...

  4. js获取当前url地址及参数

    介绍:设置或获取对象指定的文件名或路径. window.location.pathname //返回 设置或获取整个 URL 为字符串. window.location.href 设置或获取与 URL ...

  5. HUD2087

    #include<iostream> #include<cstdio> #include<cstring> #define maxn 1010 using name ...

  6. Windows Azure上的Odoo(OpenERP)

    OpenERP 改名为 Odoo 了,感觉名字怪怪的.Windows Azure也进入国内了,学习了一段时间的Azure,把它门结合在一起搞搞吧!本系列文章不涉及开发,纯属环境搭建及Odoo 系统功能 ...

  7. 第二部分面向对像基础第五章Strng类中方法的使用

    package com.java.oop.day2; import java.util.Calendar; import java.util.Formatter; import java.util.L ...

  8. Xcode 的正确打开方式——Debugging(转)

    转自CocoaChina http://www.cocoachina.com/ios/20150225/11190.html 程序员日常开发中有大量时间都会花费在 debug 上,从事 iOS 开发不 ...

  9. java_log_01

    logback&slf4j(本文中的版本为logback1.1.7.slf4j1.7.21),参照 原作者:Ceki Gülcü.Sébastien Pennec中文版译者:陈华联系方式:cl ...

  10. 如何遍历json属性和动态添加属性

    var person= { name: 'zhangsan', pass: '123' , 'sni.ni' : 'sss', hello:function (){ for(var i=0;i< ...